Table 6.157 — DRM_Mesh_Face_Table
Property |
Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Superclass |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subclass |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition |
An instance of this DRM class is a two-dimensional table that defines the face elements of a <DRM Finite Element Mesh> instance in terms of vertex numbers in the ordered <DRM Vertex> component list of the <DRM Finite Element Mesh> instance and, optionally, the topology of the face elements. The size of the first dimension is provided in the field value total_mesh_faces, while the size of the second dimension is provided in the field value max_nodes_and_rings. The first data element specifies, for cell i, j, the index in the ordered <DRM Vertex> list of the <DRM Vertex> representing the jth node of the ith mesh face. If the ith mesh face contains less than j nodes, so that j is greater than the number of the last listed node of mesh face i, then the cell data element contains zero (0). The edges of each mesh face i are implicitly defined by pairing node j to node j + 1. If the field value topology_present is set to TRUE, then the <DRM Finite Element Mesh> instance will contain a second data element in the cell data. The second data element defines surface topology by indicating, for each edge (j, j + 1) of mesh face i, the index of mesh face k (if any) that is adjacent to mesh face i along the edge. A value of 0 indicates an “outside” or “universal” adjacency. A value of i for mesh face i indicates that the edge is artificially connecting an inside perimeter ring to another perimeter ring. For a given mesh face element index i and mesh face node index j, the (i, j)-th cell gives the vertex number that comprises the j-th node of the i-th mesh face. The mesh face vertices are listed (j index) in clockwise order around the outer perimeter of the mesh face, starting and ending with a first vertex. If inner perimeter rings are present, the vertex list along the second axis continues with inner perimeter vertices in counter-clockwise order starting and ending with a first vertex on each inner ring. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Class diagram |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inherited field elements |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Field elements |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associated to (one-way) (inherited) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associated to (one-way) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associated by (one-way) (inherited) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associated by (one-way) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associated with (two-way) (inherited) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Associated with (two-way) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Composed of (two-way) (inherited) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Composed of (two-way metadata) (inherited) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Composed of (two-way metadata) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Component of (two-way) (inherited) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Component of (two-way) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Constraints |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Clarifications |
1 This value is the sum of the maximum number of nodes in any one face element in the given <DRM Mesh Face Table> instance and the maximum number of perimeter rings in any one face element. If all the face elements have simply connected perimeters, the maximum number of perimeter rings is one. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Example(s) |
|