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10 Operations 

10.1 Introduction 

This International Standard specifies operations on SRF coordinates and, in the case of 3D object-spaces, on 
SRF spatial directions, vectors and orientations. Underlying some of these operations are the similarity 
transformations relating two ORMs (two SRFs with the same ORM is treated as a special case). Similarity 
transformations are treated first in 10.3. The general case of changing the coordinate of a position in one SRF 
to its corresponding coordinate in another SRF is specified in 10.4, followed by important special cases. The 
specification of a spatial direction, vector or orientation in the context of an SRF is defined, and operations for 
changing these representations from one SRF to their corresponding representations in another SRF are 
specified in 10.5.  

Euclidean distance in 2D and 3D object-space is specified in 10.6. Geodesic distance and azimuth on the 
surface of an oblate ellipsoid (or sphere) are specified in 10.7. 

10.2 Symbols and terminology  

An important category of spatial operations is changing the representation of spatial information in one SRF to 
the representation in a second SRF. For these SRF operations, the adjective “source” shall be used to refer to 
the first SRF, and the adjective “target” shall be used to refer to the second SRF. 

The symbols in Table 10.1 are used throughout this clause. 

Table 10.1 — Symbols  

Symbol Definition 

SRFS Source spatial reference frame 

SRFT Target spatial reference frame �S Applicable region of SRFS �S Extended region of SRFS 

ORMS Object reference model of SRFS 

ORMR Reference ORM for a given spatial object 

CSS Spatial coordinate system of SRFS �S Coordinate of a position in SRFS ��() Euclidean distance ��() Geodesic distance 

Δ��⃗ T←S Origin displacement from frame T to frame S 

E Embedded orthonormal frame �S Spatial generating function of CSS 

Dom��S
 Domain of the generating function �S 

Rng��S
 Range of the generating function �S �T←S  Similarity transformation from frame S to frame T 

I Identity matrix (or operator) 

L Localized orthonormal frame �3D 3D localization operator 
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Symbol Definition ��S, �S, ℎS
 Geodetic coordinate tuple for a position in SRFS �T←S Rotation matrix from frame S to frame T �S Direction vector in SRFS σT←S Scale factor from frame S to frame T �T←S Change of basis operator from frame S to frame T � Position vector �S Mapping equations for SRFS �, �, �, � Localization parameters �S Inverse mapping equations for SRFS   Rotation operator !S Vector quantity in SRFS " World 3x3 transformation matrix 

#$%&'
S

 Position vector components in SRFS 

(Δ$Δ%Δ&)
T

 Origin displacement vector components in SRFT 

10.3 ORM operations 

10.3.1 Introduction 

The similarity transformation (see 7.3.2) �T←S between two object reference models, source ORMS and target 
ORMT underlies the coordinate operations in 10.4. There are two cases, depending on whether ORMS and 
ORMT represent the same object, or represent two different objects. 

The case where ORMS and ORMT represent the same object is addressed in 10.3.2. Although objects are often 
represented by only a single object reference model, some objects, such as the Earth, are represented by many 
different object reference models (see Annex E). Given a set of n object reference models for an object, there 
are n(n-1) possible source and target ORM pairs. Instead of specifying all possible similarity transformations 
among these object reference models, this International Standard reduces the requirement to specifying the 
reference transformation �R←S from each source ORM for the object, ORMS to the designated reference ORM 

for the object, ORMR. 

The more general case where ORMS and ORMT represent two different objects is addressed in 10.3.3. This 
includes subcases where one or both objects are represented by multiple object reference models, and where 
ORMS and/or ORMT are not the reference object reference models for their respective objects. It also includes 
subcases with different types of relationships between the two objects (see 8.4). 

10.3.2 Relating different ORMs for the same object 

If ORMS and ORMT are different object reference models that represent the same object, and therefore share 
the same reference ORM, ORMR, the similarity transformation �T←S is the composition of their reference 

transformations �R←S and �T←R, the inverse of �R←T as shown in Figure 10.1. This is the common datum 
transformation operation. 

 �T←S = �T←R ∘ �R←S (10.1) 
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Figure 10.1 — Composed transformations for a single object 

If ORMS is the reference ORM for the object, �R←S reduces to the identify I. Similarly, if ORMT is the reference 

ORM for the object, �T←R reduces to the identity I. 

If ORMS and ORMT are identical, the similarity transformation �T←S reduces to the identify I (see 10.4.3 and 
10.4.4). This subcase includes the relationship between a regional SRF and another SRF used as a reference 
(see 8.4.2). 

If ORMS is an object-fixed ORM, its reference transformation �R←S is a type of similarity transformation. Any 3D 
or 2D similarity transformation may be represented with the STT ROTATE_SCALE_TRANSLATE in the 3D case 
or STT ROTATE_SCALE_TRANSLATE_2D in the 2D case. Thus, using the notation of the STT formulation, �R←S may be represented as: 

 #$%&'
R

= �R←S -#$%&'
S

. ≡ Δ��⃗ R←S 0 σR←S�R←S #$%&'
S

 (10.2) 

NOTE   For the Earth, the processes by which object reference models are established are based on physical 
measurements. These measurements are subject to error, and therefore introduce various types of relative 
distortions between object reference models. The scale factor σR←S in Equation 10.2 should equal 1,0 since each 
ORM is for the same object-space. However, values very close to 1,0 are allowed to account for small distortions 
(see 7.3.2). The reference transformation �R←T from ORMT to the reference ORMR is also a similarity 
transformation. 

�T←R is also a similarity transformation: 

�T←R -#$%&'
R

. = �R←T
23 -#$%&'

R

. = 41 6R←T
7 8�R←T23 -#$%&'

R

9 Δ��⃗ R←T. 
= Δ��⃗ T←R 0 41 6R←T

7 8�R←T
23 #$%&'

R

 

Because the matrix �R←T is a rotation matrix, its transpose �R←T
:  is also its inverse �R←T

23 . The inverse of �R←T 

is also the matrix �T←R corresponding to the reverse rotations of ORMT with respect to ORMR. In particular: 

�T←R = �R←T
23 = �R←T

:  
and 

�T←R -#$%&'
R

. = Δ��⃗ T←R 0 41 6R←T
7 8�T←R #$%&'

R

. 

The composite operation �T←S = �T←R ∘ �R←S  reduces to: 

 �T←S -#$%&'
S

. = �T←R ∘ �R←S -#$%&'
S

. = Δ��⃗ T←S 0 4σR←S 6R←T
7 8�T←S #$%&'

S

 (10.3) 
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where: 

�T←S = �T←R �R←S, and Δ��⃗ T←S = Δ��⃗ T←R 0 41 6R←T
7 8�T←R Δ��⃗ R←S. 

If the rotations �R←S and �R←T are equal, then �T←S is the identity matrix, and if σR←S = 6R←T, �T←S simplifies 
to a translation of the origin: 

�T←S <($%&)
S

= + Δ��⃗ T←S 0 #$%&'
S

. 

Equation 10.1 and Figure 10.1 also apply to the 2D case. 

If the source ORMS is a time-dependent ORM for a spatial object, ORMS(t) shall denote the source ORMS at 
time t, and �R←S�>
 shall denote the similarity transformation from ORMS(t) to the object-fixed reference ORMR. 

For a fixed value of time t0, Equation 10.1 and Figure 10.1 generalize to �T←S�>?
 + �T←R ∘ �R←S�>?
. The 

generalization to a time-dependent target ORMT(t) is �T←S�>?
 + �T←R�>?
 ∘ �R←S. The generalization when 

both ORMs are time-dependent at time t0 is �T←S�>?
 + �T←R�>?
 ∘ �R←S�>?
. 

EXAMPLE ORMS(t) is the ORM EARTH_INERTIAL_J2000r0 at time t. ORMR is the Earth reference ORM WGS_1984. 
Because ORMS(t) and ORMR share the same embedding origin, the �R←S�>
 transformation is a (rotation) matrix 

multiplication operation (without translation). The matrix coefficients for selected values of t account for polar motion, Earth 

rotation, nutation, and precession. Predicted values for these coefficients are computed and updated weekly by the 
International Earth Rotation and Reference Systems Service (IERS) [IERS36]. See 7.5 for other examples of dynamic ORM 

reference transformations. 

10.3.3 Relating ORMs for different objects 

If ORMS and ORMT are different object reference models that represent two different objects, a source object S 
and a target object T, the similarity transformation �T←S is the composition of the reference transformation for 

ORMS, �RS←S, the similarity transformation between the reference object reference models of the two objects, �RT←RS
, and the inverse reference transformation for ORMT, �T←RT

, as shown in Figure 10.2.  

 �T←S + �T←RT
∘ �RT←RS

∘ �RS←S (10.4) 

 

Figure 10.2 — Composed transformations for two different objects 

The similarity transformations �RS←S and �T←RT
 are the same as the corresponding transformations �R←S and �T←R in 10.3.2. If ORMS is the reference ORM for the source object, �RS←S reduces to the identity I. Similarly, 

if ORMT is the reference ORM for the target object, �T←RT
 reduces to the identity I. 

Given that the two objects are fixed with respect to each other, the similarity transformation between their 

reference object reference models, �RT←RS
, depends on the relationship between the objects and their object-

spaces. If one of the objects represents an assembly that includes the other object as a component, the object-
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space of the component object can be considered to be nested within the object-space of the assembly object, 
as discussed in 8.4.2. In that case, the common object-space shown in Figure 10.2 represents the assembly 

object-space, and the similarity transformation �RT←RS
 can be derived from the known displacement and 

orientation relationships between the object reference models of the component and assembly objects. 

If the two objects are independent of each other, it still may be possible to derive the similarity transformation �RT←RS
 if the displacement and orientation relationships between the two objects can be determined. As 

discussed in 8.4.2. it may be possible to consider one object as operating within the object-space of the other 
object. In that case, the ORM of the second object provides a reference for the ORM of the first object. 
Alternatively, it may be possible to consider both objects as operating within the object-space of a third object. 
In that case, the ORM of the third object provides a reference for both objects. In these last two cases, the 
common object-space shown in Figure 10.2 represents the object-space of the reference object, 

If any ORM involved in the transformation �T←S is time-dependent, ORM(t) shall denote that ORM at time t. Any 

similarity transformations involving that ORM are also time-dependent, and shall be denoted �T←S�>
. If the 
relationship between the object reference models can be determined at a fixed value of time t0, the similarity 
transformations generalize in the manner described in 10.3.2. 

EXAMPLE ORMS is the reference ORM for the space shuttle (as source object S). ORMT is the reference ORM 

WGS_1984 for the Earth (as spatial object T). When in orbit, the object-space of the space shuttle can be considered to be 
nested within the object-space of the Earth. At time t, the position and orientation of ORMS with respect to ORMT are known. �T←S�>
 can be determined and used to transform positions with respect to ORMS to positions with respect to ORMT. 

10.4 Position operations  

10.4.1 Introduction 

Given a coordinate �S representing a position in a source SRF, SRFS, the operation25 that computes the 
corresponding coordinate �T of that position in a given target SRF, SRFT is termed a change of SRF operation. 
This is a generalization of the change of basis operation defined in 6.2. 

The general case of the change of SRF operation is addressed in 10.4.2. The general case depends on the 
existence of a similarity transformation �T←S (see 10.3) from the embedded frame determined by ORMS, the 
ORM associated with SRFS, to the embedded frame determined by ORMT, the ORM associated with SRFT. The 
general case also depends on CSS, the spatial coordinate system associated with SRFS, and CST, the spatial 
coordinate system associated with SRFT. 

Special cases allow for simplifications that result in computational short cuts to the general case. The case of 
matched normal embeddings is addressed in 10.4.3. Further specializations arise from combinations of specific 
coordinate-systems. Subclause 10.4.4 treats combinations of celestiodetic with a map projection. 

Cases where CSS and CST are based on the same abstract coordinate system, but ORMS and ORMT differ26 
do not generally produce computational simplifications. However, SRFS and SRFT are based on the 
LOCOCENTRIC_EUCLIDEAN_3D CS, a simplification is possible. This simplification is presented in 10.4.5. 
This simplification is important for operations on directions, vector quantities, and orientations (see 10.5). 

Another important special case occurs when the source object space is an abstract 3D object space. This special 
case is treated in 10.4.6.  

10.4.2 General case 

In the general case of the change of SRF operation, the source and target SRFs, SRFS and SRFT, are each 
based on a spatial coordinate system, CSS and CST. SRFS and SRFT are also each based on an object reference 

 

25 ISO 19111 defines this case as a coordinate operation. 

26 ISO 19111 defines this case as a coordinate transformation. 



ISO/IEC 18026:2023(E) 

294 © ISO/IEC 2023 – All rights reserved

 

model, ORMS and ORMT. SRFS and SRFT can be associated with different objects or with the same object. If 
SRFS and SRFT are associated with the same object, they can be based on different object reference models 
for that object, or on the same ORM. 

Given two object-fixed SRFs, SRFS and SRFT, and a point in an object-space � that is within the applicable 
regions of both SRFs, the most general form of the change of SRF operation is: 

 �T + �T
-1 ∘ �T←S ∘ �S��S
 (10.5) 

where �S denotes the coordinate of � in SRFS, and �T denotes the coordinate of � in SRFT. �S is the spatial 

generating function for CSS. �S��S
 is the position vector � expressed in the embedded frame determined by 
ORMS. �T←S is the similarity transformation that transforms � from the embedded frame determined by ORMS 

to the embedded frame determined by ORMT. The inverse of the spatial generating function �T, operating on � 

expressed in terms of the embedded frame determined by ORMT, returns �T. The composition of these 
operations is illustrated in Figure 10.3. CS generating and inverse generating functions are specified in Clause 
5. Similarity transformations are specified in Clause 7. 

 

Figure 10.3 — Change of SRF operation – applied to coordinates 

Equation 10.5 is only defined for a value of �S in the CSS domain if its corresponding position belongs to the 

CST range (the range of a generating function is the domain of its inverse generating function). If Dom��S
 is 

the domain of the generating function �S , Rng��S
 is the range of the generating function �S , and Rng��T
 is the 

range of the generating function �T, Equation 10.5 is only defined for �S in the set: 

 �S
2A BCDE��S
 ∩ �T←S

2A 4CDE��T
8G ≡ H�S in Dom��S
|�T←S4�S��S
8 in CDE��T
L (10.6) 

If �S does not belong to this set, it is invalid for the operation in Equation 10.5. 

EXAMPLE SRFS is SRF GEOCENTRIC_WGS_1984 and SRFT is an instance of SRF template MERCATOR, with 
ORM WGS_1984. For any �S that is on the z-axis of SRFS, Equation 10.5 is not defined and is thus invalid, because the z-

axis is not contained in the range of SRF template MERCATOR and, thus, it is not contained in the set in Equation 10.6. 

SRFT may optionally specify an applicable region �T, and may optionally also specify an extended region �T 

(see 8.3.2.4). If Dom��T
 is the domain of the generating function �T, then �T ⊆ �T ⊆ NOP��T
. If �T is computed 

using Equation 10.5, �T is either within the applicable region (�T is in �T), or �T is within the extended region but 
not within the applicable region (�T is in �T/�T), or �T is within the CS domain but not within the extended region 

(�T is in Dom��T
\�T). 

In applications that functionally conform to an SRM profile, the domain of an SRF operation is restricted to the 
accuracy domain of the SRF as specified by that profile (see Clause 12). 

Equation 10.5 depends on the existence of a similarity transformation �T←S from the embedded frame 
determined by ORMS to the embedded frame determined by ORMT. If ORMS and ORMT represent the same 
object, �T←S is as defined in 10.3.2. If ORMS and ORMT represent different objects, �T←S is as defined in 10.3.3. 
The simplifications  
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If SRFS and SRFT are two celestiodetic SRFs with different object reference models for the same spatial object, 
Equation 10.5 transforms the coordinate �S = ��S, �S, ℎS
 with respect to one oblate ellipsoid to �T = ��T, �T, ℎT
 
with respect to the other oblate ellipsoid. A transformation between two celestiodetic SRFs for the spatial object 
Earth is known as a horizontal datum shift. 

NOTE A number of numerical approximations developed to implement horizontal datum shift have been published. 

Under the assumption of zero rotations and no scale differences, a widely used approximation27 to directly transform �S =��S, �S, ℎS
 to �T = ��T, �T, ℎT
 is the standard Molodensky transformation formula (see [NGA36]).  

In the case of a time-dependent relationships between ORMS and ORMT, Equation 10.5 generalizes to: �T�>
 = �T
-1 ∘ �T←S�>
 ∘ �S��S
 

The time-dependent similarity transformation �T←S�>
 is as discussed in 10.3.2 and 10.3.3, depending on 
whether ORMS and ORMT represent the same object or two different objects. 

10.4.3 Matched normal embeddings 

In this special case of the change of SRF operation, the source and target SRFs share the same ORM, or, more 
generally, the reference transformations of ORMS and ORMT are equivalent (i.e., matched normal embeddings), 
and therefore �T←S is the identity transformation. Consequently, Equation 10.5 simplifies to: 

 �T = �T
-1 ∘ �S��S
   for all �S in the set:  H�S

2A4CDE��S
 ∩ CDE��T
8L. (10.7) 

EXAMPLE 1 If SRFS is a celestiodetic SRF and SRFT is the celestiocentric SRF for the same ORM, then since the CS 

of the celestiocentric SRF is Euclidean_3D for which the �T
-1 is the identity, Equation 10.7 reduces to the geodetic generating 

function: �T = �S��S
. 

If SRFT is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF (see 
8.4.3), and SRFS is the induced zero height surface SRF, the promotion operation converts a surface coordinate �S in SRFS to a 3D coordinate in SRFT by setting the 1st and 2nd coordinate-components of �T to the 1st and 2nd 

coordinate-components of �S and setting the 3rd coordinate-component, ellipsoidal height, to 0. Coordinate 
promotion is a special case of Equation 10.7. Applicable spatial reference frames include those based on SRF 
templates CELESTIODETIC, PLANETODETIC, and all map projection SRF templates.  

EXAMPLE 2 If SRFS is an induced zero height surface celestiodetic SRF and SRFT is the 3D celestiodetic SRF for the 
same ORM, Equation 10.7 promotes �S = ��, �
 from a coordinate of CS type surface to �T = ��, �, 0
 a coordinate of CS 

type 3D.  

If SRFS is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF 
(see 8.4.3), and SRFT is the induced zero height surface SRF, the truncation operation converts a 3D coordinate �S in SRFS to a surface coordinate �T, by setting the 1st and 2nd coordinate-components of �T to the 1st and 2nd 

coordinate-components of �S. The point in object-space corresponding to �S and the point in object-space 
corresponding to �T are not the same point unless the height coordinate-component ℎ = 0. Truncation, 
therefore, does not generally preserve location. 

EXAMPLE 3 If SRFS is a celestiodetic 3D SRF, the (induced) zero height surface SRFT is the surface celestiodetic SRF 
for the same ORM. The truncation operation associates �T = ��, �
 to �S = ��, �, 0
. 
EXAMPLE 4 SRFS is a celestiodetic 3D SRF based on ORM SIRGAS_2000 (Table D.2). SRFT is a celestiodetic 3D SRF 

based on ORM WGS_84, which is the reference ORM for Earth. The reference transformation for SIRGAS_2000 (Table 
E.6) is the identity transformation, thus the ORM embedded frames match and Equation 10.7 applies. However, the ellipsoid 

RDs for these two ORM have differing minor semi-axis values b. Thus, the generating functions for these SRFs, while both 

 

27 Historically it was thought that these approximations would require less computation than direct conversion. The perceived 

computational advantage may have been overcome by technology advances. New efficient algorithms for converting 
celestiocentric coordinates to celestiodetic coordinates have been developed that result in appreciably faster transformations 

without the attendant loss of accuracy. 
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celestiodetic 3D, have differing values at non-zero latitudes. Consequently �T
-1 ∘ �S in Equation 10.6 will not equal the identity 

function. Furthermore, the range of SRFS is smaller than the range of SRFT. 

10.4.4 Matched normal embeddings and map projection SRFs 

In this special case of the change of SRF operation for map projection spatial reference frames, the source and 
target spatial reference frames share the same ORM, or, more generally, the reference transformations of ORMS 
and ORMT determine the same embedded frame (i.e., matched normal embeddings), and therefore �T←S is the 
identity transformation. 

The spatial CS generating function �MP for an augmented map projection SRF is implicitly defined (see 5.3.7.2 

and 5.4.2) by the composition of the spatial generating function, �GD, for the geodetic 3D CS with the inverse 

mapping equation � ≡ �R3, RS, ℎ
 as: 

�MP = �GD ∘ �. 

If SRFS and SRFT are map projection spatial reference frames for the same object, and the reference 
transformations of ORMS and ORMT are equivalent, Equation 10.7 becomes: 

 

�T = ��GD,T ∘ �T
23 ∘ ��GD,S ∘ �S
��S
 

= �T ∘ �GD,T23 ∘ �GD,S ∘ �S��S
 
(10.8) 

where: 

�S:  inverse mapping equations for SRFS, 

�GD,S:  spatial generating function for the geodetic 3D CS for SRFS, 

�T:  inverse mapping equations for SRFT (the inverse of �T) 

�T:  mapping equations for SRFT, and 

�GD,T:  spatial generating function for the geodetic 3D CS for SRFT, 

Furthermore, if ORMS = ORMT, �GD,S = �GD,T and Equation 10.8 simplifies to: 

 �T = �T ∘ �S��S
. (10.9) 

If SRFT is a celestiodetic SRF, SRFS is an augmented map projection SRF, and ORMT = ORMS, Equation 10.7 
simplifies to: 

�T = TS��S
. 

Similarly, if SRFS is a celestiodetic SRF, SRFT is an augmented map projection SRF, and ORMT = ORMS, 
Equation 10.7 simplifies to: 

�T = �T��S
. 

10.4.5 Cartesian 3D SRFs 

In this special case of the change of SRF operation both the source and target SRFs (SRFS and SRFT) are  
instances of the LOCOCENTRIC_EUCLIDEAN_3D SRF template (Table 8.11). This special case is important 
for the treatment of directions, vectors, and orientations (see 10.5). This SRFT requires localization parameter 

vectors �, �, and � in the embedded frame E determined by the associated ORM. In terms of these parameters 

the spatial generating function, �LE3D, is in the form of an affine transformation and thus allows the change of 
SRF operation to be explicitly expressed in affine transformation form (Equation 10.10) as well. The affine form 

of �LE3D operating on the coordinate �U, V, W
 of a position � in the localized frame L is: 

� = �LE3D4�U, V, W
8 = �3D ∘ �E3D4�U, V, W
8 

= � + U� + V� + W� 

= � + U (X3XSXY
) + V (Z3ZSZY

) + W (>3>S>Y
) 
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= � + (X3XSXY
Z3ZSZY

>3>S>Y
) (UVW) 

= � + �[←� (UVW) 
where: 

�[←� + (X3XSXY
Z3ZSZY

>3>S>Y
) + (� • ] � • ] � • ]� • ^ � • ^ � • ^� • _ � • _ � • _) , 

�, � and � + �� ` �
 are the basis vectors of the localized frame L, and ], ^, _ are the basis vectors of the embedded frame E. 

The spatial generating function �LE3D maps a coordinate tuple in the domain of the localized frame of the SRF 

to the corresponding position � in terms of the embedded frame E determined by the ORM of the SRF. The 

coordinate tuple �U, V, W
 corresponds to the column vector aU V Wb:, for � in the localized frame L specified 

by the parameters �, �, and �. 

The inverse generating function can be similarly expressed as: �LE3D
23 ��
 = �U, V, W
 

where aU V Vb: = ��←[�� 9 �
 and ��←[ + �[←�23 + �[←�:  

The change of basis operation ��←[ transforms a position-vector in terms of the embedded frame E to the 

corresponding position-vector in terms of the localized frame L of the SRF. 

The affine form of the spatial generating function �LE3D and its inverse provide an affine form for the change of 
SRF operation between two instances of the Lococentric Euclidean 3D SRF template, SRFS and SRFT, with 
differing ORMs. This is illustrated in Figure 10.4. In this figure, the Z axis of each of the four frames shown 
projects out of the page. SRFS has localization parameters �S, �S, �S and associated ORMS, and SRFT has 
localization parameters �T, �T, �T and associated ORMT. The similarity transformation between these object 

reference models is denoted by �T←S. 

 
Figure 10.4 — Change of SRF operation for Lococentric Euclidean 3D SRFs 

The coordinate �T in SRFT that corresponds to coordinate �S in SRFS can be computed using Equation 10.5: 
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�T + �LE3D, T23 ∘ �T←S ∘ �LE3D, S��S
 

The change of SRF operation consists of three steps. First, the coordinate �S is transformed from the localized 

frame �S for SRFS to its embedded frame [S, as shown in the left side of Figure 10.4. Next, the similarity 
transformation �T←S transforms the coordinate from the embedded frame [S for SRFS to the embedded frame [T for SRFT. Finally, the coordinate is transformed from the embedded frame [T of SRFT to its localized frame �T, as shown in the right side of Figure 10.4. 

Substituting the expression in Equation 10.3 for �T←S, and applying the affine transformation to both �LE3D, S 

and �LE3D, T23  gives: 

 

�T = ��T←cT

: B�T←S B�S 0 ��S←cS
��S
G 9 �TG 

= ��T←cT

: dΔ��⃗ T←S 9 �T 0 σR←SσR←T

�T←S B�S 0 ��S←cS
��S
Ge 

= ��T←cT

: fΔ��⃗ T←S 0 σR←SσR←T

�T←S�S 9 �Tghiiiiiiiiiiijiiiiiiiiiiiklmnopqnp rslpmt
+ σR←SσR←T

4��T←cT

: ∘ �T←S ∘ ��S←cS
8hiiiiiiijiiiiiiik uqptvw uxypvzyvlqpvmn

��S
 

where �S  = �U, V, W
S, �T  = �$, %, &
T, and 

for: i = S or T, 

��{←c{ = |Xv,3Xv,SXv,Y
Zv,3Zv,SZv,Y

>v,3>v,S>v,Y
},  

�v = �Xv,3 Xv,S Xv,Y
, �v = �Zv,3 Zv,S Zv,Y
, and �v = �>v,3 >v,S >v,Y
 are the CS 

localization parameters 

(10.10) 

The advantage of the final form of Equation 10.10 is that it is significantly more efficient when transforming a 
large number of points, as the constant vector component can be computed only once and reused for each 
point. 

If the corresponding reference transformations of ORMS and ORMT are equivalent, in that they each determine 
the same embedded frame, Equation 10.7 specializes to Equation 10.11: 

 

�T = �LE3D,T23 ∘ �LE3D, S��S
, 

= ��T←cT

: ��S − �T
 + ��T←cT

: ∘ ��S←cS
��S
  

where �S  = �U, V, W
 

(10.11) 

Every Cartesian SRF C is equivalent to the LOCOCENTRIC_EUCLIDEAN_3D SRF specified with SRFT 
localization parameters defined as: 

� is the embedded frame vector for the origin of C,    � is the unit vector on the primary axis of C pointing in the positive direction, and  � is the unit vector on the secondary axis of C pointing in the positive direction. 

Thus Equations 10.10 and 10.11 apply to Cartesian SRFs as well. 

Similarly, the Cartesian coordinate system of any spatial orthonormal frame specified with frame parameter 
vectors �, �, and � may also be identified with a LOCOCENTRIC_EUCLIDEAN_3D SRF using the same 
parameters. 

10.4.6 Instantiating abstract object-space SRFs 

Engineering designs or abstract models are intended for realisation in the physical world or in virtual worlds. 
Instantiation of such models can require several types of SRFs and specific sequences of position operations. 
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Abstract models are designed in abstract object-spaces using such Cartesian SRFs as 
LOCAL_SPACE_RECTANGULAR_3D. In many application domains, abstract models are included in other 
object-spaces. These other (target) object-spaces may be another abstract object-space, using its own instance 
of a LOCAL_SPACE_RECTANGULAR_3D SRF, or may be a physical object-space that either uses a Cartesian 
SRF or a non-Cartesian SRF. To include an abstract model in a target object-space that is specified with a non-
Cartesian SRF, it is necessary to establish a localized Cartesian SRF. Whether the target object-space is 
specified with a Cartesian SRF or a non-Cartesian SRF, the instancing of an abstract model uses a uniform 
method by establishing a localized Cartesian SRF. The SRF in the target object-space supplies the reference 
coordinate � to specify the origin of the localized Cartesian SRF, which is instanced from either a 
LOCAL_TANGENT_SPACE_EUCLIDEAN SRFT or a LOCOCENTRIC_EUCLIDEAN_3D SRFT. In this role, 
the target object-space SRF becomes the reference SRF and the localized SRF acts as the target SRF. 

EXAMPLE  1 A building plan is designed in the source model SRFS, an abstract space 

LOCAL_SPACE_RECTANGULAR_3D SRF. A terrestrial site survey establishes the coordinate for the origin of the 

model in a reference SRF, a celestiodetic SRFR. The target LOCAL_TANGENT_SPACE_EUCLIDEAN SRF, SRFT, is 

instanced at the origin point specified in SRFR. Source coordinates in SRFS are related to local target coordinates in SRFT 
by: �$T, %T, &T
 = 6�$S, %S, &S
, where 6 is a model scale factor. In addition to scaling, the instanced model is often rotated to 

adjust its orientation at the instanced position. 

NOTE   In some modelling applications, the model centre of gravity or bounding box centre, among other choices, is 

considered to be the "model origin". However, for purposes of model instantiation, the model origin is the point with 

coordinate (0, 0, 0) in the SRF in which the model is defined. 

The instancing of an abstract model entails the following steps, which provide a uniform method for both 
Cartesian and non-Cartesian-based SRFs of target object-space: 

1) If the abstract space geometric model is specified in SRFM that is not a 
LOCAL_SPACE_RECTANGULAR_3D SRF and is instead specified in another 2D or 3D abstract space 
SRF, the model is converted using Equation 10.6 from SRFM to SRFS, a 
LOCAL_SPACE_RECTANGULAR_3D SRF. Otherwise, SRFM becomes SRFS. 

2) The position at which the model is instanced in the physical or abstract target object-space is identified 
by a coordinate � in SRFR, a reference SRF for the target object-space. 

3) The target for the conversion is SRFT, a localized Cartesian 3D SRF with its origin specified by the 
coordinate � in SRFR. SRFT must be compatible with SRFR. SRFT may be either a 
LOCAL_TANGENT_SPACE_EUCLIDEAN SRF or a LOCOCENTRIC_EUCLIDEAN_3D SRF. SRFT is 
realised by the reference coordinate � and the SRFT template parameters. 

4) A world transformation is supplied to correctly position, scale, and orient the geometric model instance. 
The transformation includes a scaled rotation matrix 6 , where 6 is a scale factor and   is a rotation or 

identity matrix. The transformation may also optionally include Δ��⃗ T = �Δ$T, Δ%T, Δ&T
, an offset of the 
model origin from the SRFT origin. 

5) Each model vertex coordinate in SRFS is converted to a corresponding coordinate in SRFT through the 
following transformation: 

 #$%&'
~

= (Δ$Δ%Δ&)
T

+ 6 #$%&'
�

. (10.12) 

This equation is in the form of Equation 10.4 where �T←S�!
 =  Δ�⃗ T +  6 ! and �S = �T = Identity, thus the 
conversion may be viewed as a change of SRF operation. See also 10.5.3 Example. In the terminology of 
ISO/IEC 18023-1 Data Representation Model (DRM) classes, " = 6  is the world transformation 3x3 matrix 
class. 

NOTE   Equation 10.12 illustrates that digital graphic composite pattern modelling techniques such as SceneGraph trees 
that use scale and rotation matrices W together with translation operations at each tree node are special cases of Equation 

10.4. See also 10.5.3 Example. 

EXAMPLE  2 A model geometry is specified in SRFM, an abstract object-space Cartesian SRF. The model is to be 
instanced in a physical object-space with a geocentric reference SRF, SRFR. The SRFR reference coordinate � determines 

the position of the model origin at point �. SRFT is the target SRF realised from the LOCOCENTRIC_EUCLIDEAN_3D 
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SRFT with template parameters �, �, �, where � and � are, respectively, the primary and secondary coordinate axis unit 

vectors of SRFT with respect to SRFR. The orientation of the instanced model with respect to SRFT (and SRFR) is determined 
by the model’s rotation matrix  . 

EXAMPLE  3 A CAD model of an automobile wheel is designed in an abstract object-space using a 

LOCAL_SPACE_RECTANGULAR_3D source SRF, SRFS. The wheel model is then instanced into another abstract object-
space where a CAD model for the entire car is being designed, using a target LOCAL_SPACE_RECTANGULAR_3D SRF, 

SRFT. This is illustrated in Figure 10.5. In this simple case, there is no need for a distinct reference SRF, and there is no 
need to localize the target SRF. The centre of the wheel model is at the origin of SRFS, and its orientation is aligned with the 
axes of SRFS. A transformation �T←S embeds an instance of the SRFS into the abstract object-space of the car model, 

scaling the wheel model by 6 to be consistent with the car model, and translating it by �T to the appropriate position with 

respect to the car model. If necessary, the transformation can also rotate the wheel model by   to align it with the car model. 

 

Figure 10.5 — Abstract object realised in another abstract object-space 

EXAMPLE  4 A house is designed in an abstract object-space using a LOCAL_SPACE_RECTANGULAR_3D source 

SRF, SRFS. A terrestrial site survey using the GEODETIC_WGS_1984 SRF as the reference SRF, SRFR, establishes the 
geodetic coordinate �λ?, φ?, ℎ?
 of the southeast corner of the site where the house will be built. This geodetic coordinate 

provides parameter values for an instance of the LOCAL_TANGENT_SPACE_EUCLIDEAN SRF template that defines the 

origin (and tangent point) of the target SRF, SRFT. The origin of SRFT is at the southeast corner of the building site, and its 
axes align with local east and local north. Because the house will not be positioned at the origin of SRFT, or aligned with its 
axes, the transformation �T←S scales the house model to its actual size, rotates it to its planned orientation on the site, and 

translates it to its planned position. This is illustrated in Figure 10.6. 

 

Figure 10.6 — Abstract object realised using a geodetic reference point 

EXAMPLE  5 A house is designed in an abstract object-space using a LOCAL_SPACE_RECTANGULAR_3D source 
SRF, SRFS. The GEOCENTRIC_WGS_1984 SRF is used as the reference SRF, SRFR. The localization parameters �T,  �T, 

and �T, for an instance of the LOCOCENTRIC_EUCLIDEAN_3D SRF template define the target SRF, SRFT,. The geocentric 

coordinate (x, y, z) determines a corner of the building site, which is the origin of SRFT at �T. The building site footprint 

determines the axes  �T and �T. Because the house will not be positioned at the origin of SRFT, or aligned with its axes, the 
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transformation �T←S scales the house model to its actual size, rotates it to its planned orientation on the site, and translates 

it to its planned position. This is illustrated in Figure 10.7. 

 

Figure 10.7 — Abstract object realised using a geocentric reference point 

10.5 Vector operations 

10.5.1 Introduction 

Directions and vector quantities associated with a 3D SRF are specified with respect to 3D orthonormal frames 
(see 5.2.3). Given an orthonormal frame for object-space (see 8.4.4), a direction is represented as a unit vector 
in the Cartesian coordinate system determined by the frame. Vector quantities, such as velocity or force, are 
specified as vectors of appropriate direction and magnitude in the frame. The 3D orthonormal frame is termed 
the vector reference frame (see 5.3.6.4). 

The choice of the vector reference frame is often determined by the requirements of the user application. A 3D 
SRF can be used to directly or indirectly specify the vector reference frame. 

One choice is to use a local tangent frame as the vector reference frame. A coordinate � in the interior of the 

domain of an orthogonal right-handed 3D28 SRF specifies the local tangent frame at � (see 5.3.6.3 and 8.4.5). 
This local tangent frame has its origin at � and its basis vectors tangent to the coordinate-component curves of 
the 3D SRF at the origin. 

In the special case that the 3D SRF is a Cartesian SRF, all coordinate-component curves are straight lines in 
object-space. For each coordinate-component, all coordinate-component curve instances are parallel to one 
another. All coordinate-component curve instances for each coordinate-component are perpendicular to the 
coordinate-component curve instances for the other two coordinate-components. Thus, all local tangent frames 
of a Cartesian SRF are oriented the same way and differ only in the location of the frame origins. 

A second, less restrictive, choice is to use a localized frame (see 8.4.5) as the vector reference frame. A 
Cartesian SRF with spatial generating function �� 
 specifies a localized frame by coordinates �m, �t , �o where 
���m
 is the localized frame origin and the vectors ���t
 9 ���m
 and ���o
 9 ���m
, which are perpendicular to 
each other, are its basis vectors (see 5.3.6.3). 

Given a vector with respect to one vector reference frame, the representation of the vector can be converted to 
a second vector reference frame if the orientation of one frame with respect to the other can be computed. The 
conversion computation in various situations is treated in 10.5.2 and 10.5.3. This operation uses a specialized 

 

28 All of the 3D SRFTs in this International Standard are based on orthogonal right-handed CSs. 
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form of Equation 10.3, dropping the translation term since vectors are translation invariant and dropping the 
scale factor to preserve the magnitude of the vector. 

10.5.2 Representing vectors in different vector reference frames 

Given a source SRF, SRFS, with corresponding ORMS and embedded frame �S, and a target SRF, SRFT, in the 
same object-space, with a corresponding ORMT and embedded frame �T, a vector reference frame �S can be 

derived from SRFS at coordinate �S as described in 10.5.1. Similarly, another vector reference frame �T can be 

derived from SRFT at coordinate �T. 

There are several conditions under which the embedded frames �S and �T are the same (i.e., share the same 
origin and the same basis vectors): 

a) SRFS and SRFT are the same SRF, 
b) SRFS and SRFT are specified using the same ORM, or 
c) SRFS and SRFT are specified using different ORMs that determine normal embeddings that produce 

the same embedded frame. 

Given !S, a vector with magnitude and direction represented in vector reference frame �S, the same vector, 

denoted as !T, can be represented with respect to vector reference frame �T as: 

!T = �T←S !S, 

where �T←S is the orientation of vector reference frame �S with respect to vector reference frame �T (see 6.3.2). 

When both vector reference frames �S and �T are specified using the same embedded frame, �T←S is the 

direction cosine matrix that transforms positions in �S to equivalent positions in �T (see 6.2.2): 

 

�T←S = (�S • �T �S • �T �S • �T�S • �T �S • �T �S • �T�S • �T �S • �T �S • �T

),  

where: �v , �v and �v are the basis vectors of vector reference frame �v at �v, 
for � = S, T. 

(10.13) 

When the two vector reference frames �S and �T are specified using different embedded frames, !T is computed 
as: 

 

!T =  T
: ∘ �T←S ∘  S !S  

where:  T
: is the transpose of RT,  �T←S is the rotation matrix component of the similarity transformation �T←S from 

ORMS to ORMT (see Equation 10.3 in 10.3.2) and  

for: i = S or T, 

 v = |Xv,3Xv,SXv,Y
Zv,3Zv,SZv,Y

>v,3>v,S>v,Y
},  

�v = �Xv,3 Xv,S Xv,Y
, �v = �Zv,3 Zv,S Zv,Y
, and �v = �>v,3 >v,S >v,Y
 are the basis 

vectors for the vector reference frame at �v with respect to the embedded frame �i. 

(10.14) 

Equation 10.14 is derived from Equation 10.3 by dropping the translation term since vectors are translation 

invariant and dropping the scale factor 
6SR 6TR

7  to preserve the magnitude of the vector. 

The rotation matrix �T←S in Equation 10.14 is termed the orientation of SRFS at reference coordinate �S, with 

respect to SRFT at reference coordinate �T. The rotation matrix �T←S is a generalization of the matrix in 

Equation 10.13 that accounts for the change of embedded frames between ORMS and ORMT. 

EXAMPLE SRFS is SRF GEODETIC_WGS_1984 and SRFT is SRF GEOCENTRIC_WGS_1984. With SRFS reference 
coordinate �S = ��, �, ℎ
 = �−77�/180, +38,88�/180, 0
. The Washington monument, an obelisk located at �S, 



ISO/IEC 18026:2023(E) 

© ISO/IEC 2023 – All rights reserved 303

 

points approximately in the direction �S = �0, 0, 1
 in the local tangent frame at �S. In this example, ORMS = ORMT so 
that case b) applies. Since SRFT is a Cartesian SRF, the local tangent frame at a coordinate �T in SRFT has the same basis 

vectors as the embedded frame, hence the dot product components of   appearing in Equation 10.13 with the basis 

vectors �S, �S, �S for the tangent frame at �S reduce to column vectors for �S, �S, �S in embedded frame coordinates, so that: 

�T =  S �S = |XS,3XS,SXS,Y
ZS,3ZS,SZS,Y

>S,3>S,S>S,Y
} (001) = |>S,3>S,S>S,Y

} = �S. 
Then using the expression in 8.4.4 Example 3 for �S:  �S = �cos �? cos �? sin �? cos �? sin �?
 = �cos�−77�/180
 cos�38,88�/180
 sin�−77π/180
 cos�38,88�/180
 sin�38,88�/180

 = �0,17511592 −0,75851036 0,62769136
. 
The resulting vector �T = �0,17511592 −0,75851036 0,62769136
 is the direction vector at coordinate �T in SRFT. 

10.5.3 Instantiating abstract object-space SRF directions in another object-space 

Engineering designs and abstract models are often intended for realization in the physical world. In such cases, 
the operation of changing the representation of direction vector �S in a linear SRF representing the abstract 

space to a direction vector �T with respect to a vector reference frame �T in an SRF for a physical object-space 

is based on Equation 10.11. Denoting the basis vectors for �T by �T, �T, �T, and transforming the direction vector 

through matrix multiplication by a given invertible matrix 3x3 W (see 10.4.6 Example), �T is computed as: 

 
��S = 1|�| "�S �T =  T��S 

(10.15) 

where matrix  T is defined in Equation 10.14. Division by the determinant |"| cancels any scaling by matrix W 

to ensure that �T is a unit vector. (The rotation matrix  T does not change the length of ��S.) 

EXAMPLE In ISO/IEC 18023-1, if an instance of the class <DRM Geometry Model Instance> has a component of 

class <DRM World Transformation>, that component specifies an invertible matrix W and a coordinate c in the <DRM 
Environment Root> SRF. If �S is a direction vector at reference coordinate �S in an associated 

LOCAL_SPACE_RECTANGULAR_3D <DRM Geometry Model>, Equation 10.11 may be used to compute �T in the 

<DRM Environment Root> SRF and Equation 10.15 may be used to compute the �T direction at �T. This procedure to 

change <DRM Geometry Model> coordinates and directions to the environment root SRF is termed "model instancing".  

10.6 Euclidean distance operation 

This International Standard supports an operation to return the Euclidean distance between two object-space 
locations using the coordinates of those locations in an SRF. 

If c1 and c2 are two coordinates in an SRF, and if G is the generating function of the CS of the SRF, the Euclidean 
distance dE between the corresponding points in object-space is given by: 

����3, �S
 = �4���3
, ���S
8 

where d is the Euclidean metric. 

10.7 Geodesic distance operations 

10.7.1 Introduction 

A curve on a smooth surface that has the property that any sufficiently small segment of it realizes the shortest 
distance on the surface between the segment’s two endpoints is termed a geodesic (see Figure 10.8). The formal 
definition of a geodesic is given in A.7.4. 

EXAMPLE 1 On a sphere, the equator, the meridians, and all other great circles are geodesics. Likewise any segment of 

one of these curves is a geodesic.  No parallel of latitude except the equator is a geodesic. 
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EXAMPLE 2 On an oblate ellipsoid, the equator is a geodesic, and the meridians are all geodesics. All the other geodesics 

are curves which wind around the ellipsoid between two parallels of opposite latitude and any segment of which that crosses 

the equator, crosses at some non-right angle. 

 

Figure 10.8 — Examples of geodesics 

Let points p1 and p2 lie on a smooth surface. The shortest distance on the surface from p1 to p2 is the shortest 

arc length associated with any of the smooth surface curves that connect p1 to p2. This distance is unique, but 
the curve that has this arc length may not be unique. In particular, for the two pole points, every meridian is such 
a shortest curve. 

EXAMPLE 3 On an oblate ellipsoid, let p1 be the point with surface geodetic coordinates (λ, φ) = (0°, 20°) and let p2 be the 

point diametrically opposite, i.e., with surface geodetic coordinates (λ, φ) = (180°, -20°). In that case, the shortest distance 

on the surface from p1 to p2 is twice the meridional quadrant, i.e., twice the length of a meridian from equator to pole.  But 

there are two distinct curves from p1 to p2 which have this number as their arc length – one passes through the north pole 

and the other passes through the south pole. (Both are composed of segments of meridians). 

EXAMPLE 4 On an oblate ellipsoid with eccentricity ε, let points p1 and p2 lie on the equator but be separated by a longitude 

difference that is less than π and more than �√1 − �S, an angle termed the “lift-off longitude”. Then there will be two curves 

from p1 to p2 whose arc length is the shortest distance from p1 to p2 – one lying in the northern hemisphere, the other lying 

(symmetrically) in the southern hemisphere. If the longitude difference is less than �√1 − �S, the shorter equator segment 

from p1 to p2 is the shortest connecting curve. 

If a curve lying on a smooth surface connects point p1 to point p2, and if that curve’s arc length is also the shortest 
distance from p1 to p2, then that curve is a geodesic. Thus, the arc length of the shortest curve connecting the 
two points is termed the geodesic distance. 

EXAMPLE 5 The two curves from p1 to p2 defined in Example 3 are geodesics. 

EXAMPLE 6 The two curves from p1 to p2 defined in Example 4 are geodesics. 

The converse is not true. If a geodesic starts at point p1 and ends at point p2, its arc length may or may not be 

the same as the shortest distance on the surface from p1 to p2. 
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EXAMPLE 7 Let points p1 and p2 lie on the equator of a sphere or oblate ellipsoid at longitudes 0° and 181°, respectively.  

The segment of the equator from p1 to p2 that is continuous in longitude from 0° to 181° is a geodesic. (All segments of the 

equator are geodesics). However, its arc length is not the shortest distance on the surface from p1 to p2. Any curve which 

realizes the shortest distance on the surface from p1 to p2 has to lie within a single hemisphere of longitude. 

There are two problems of interest pertaining to geodesics on an oblate ellipsoid. In the first, termed the direct 
problem, a surface point, an azimuth, and a distance are given. The problem is to find a second surface point 
which terminates the (unique) geodesic whose initial point is the given point, whose initial forward azimuth is 
the given azimuth, and whose arc length is the given distance. Also to be found is the geodesic’s terminal 
forward azimuth. The details are given in 10.7.3. 

In the second problem, termed the indirect problem, two distinct surface points are given. The problem is to find 
the shortest distance on the surface between the two given points, and find the set of curves (which will be 
geodesics) whose arc lengths equal this shortest distance. In addition, the initial and terminal forward azimuths 
of each curve is to be found. The details are in 10.7.4. 

This International Standard supports the geodesic operations for SRFs based on SRFT CELESTIODETIC, 
PLANETODETIC, and all map projection SRFTs. 

Given two surface coordinates c1 and c2 of points p1 and p2, respectively, the geodesic distance operation: 

Z = ����3, �S
 

is defined as the distance solution to the indirect problem for (λ1, ϕ1) and (λ2, ϕ2) where (λ1, ϕ1) is the surface 

geodetic coordinate for c1 and (λ2, ϕ2) is the surface geodetic coordinate for c2. 
An extended version of this operation provides the forward azimuth value α1 at c1 and the forward azimuth value 

α2 at c2: 
�Z, �3, �S� = �����3, �S
. 

The geodesic destination operation corresponding to the direct problem requires a starting point c1, a forward 

azimuth value α1, at c1 and a positive distance s. It returns the destination point c2 and the forward azimuth value 

α2 at c2: 
��S, �S� = �����3, �3, Z
 

where {(λ2, ϕ2), α2} is the direct problem solution for input parameter values {(λ1, ϕ1), α1, s}. 

There is a large body of literature concerning computational techniques to solve the direct and indirect problems. 
In the interest of accuracy and computational efficiency, many of these computational techniques treat the 
problems by sub-cases -- short lines, long lines, intermediate length lines, and other caveats and exceptions. 
Each of these has been optimized in a way that is appropriate for the intended application or user domain. For 
purposes of this International Standard, a recently published treatment ([ROL10]) that has one mathematical 
formulation to cover all cases is utilized. 

10.7.2 Auxiliary functions 

The treatment of the direct and indirect problems in 10.7.3 and 10.7.4 require the auxiliary functions defined in 
this subclause. 

An important characteristic of a geodesic on an oblate ellipsoid is that the quantity termed the (non-metric) 
Clairaut constant and defined by: 

� = sin��
 cos��
�1 − �S sinS��
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has a constant value at every point on a given geodesic, where (λ, ϕ) is the coordinate of a point on the geodesic 

and α is the azimuth of the curve at that point. 

The mathematics required to solve the direct and indirect problems involves the use of elliptic integrals. The 

incomplete elliptic integral of third kind is defined for real n, θ and m, with m2 < 1 as: 

¢�D, £, P
 = ¤ �¥ B�1 − D Z�DS ¥
�1 − P Z�DS ¥G7¦? . 

The treatment in [ROL10] defines two auxiliary functions: a longitude difference function L��, £3, £S
 and an arc 

length function A��, £3, £S
 that are defined for all values of c, θ1 and θ2 by: 

 

L��, £3, £S
 = B��1 − �S
 �1 − �S�S⁄ G 4¢�ªS��
, £S, ªS��
�S
− ¢�ªS��
, £3, ªS��
�S
8,  � ≠ 0 L�0, £3, £S
 = ¬�Pl→?® L��, £3, £S
. 

(10.16) 

and 

 

A��, £3, £S
 = B¯�1 − �S
 �1 − �S�S⁄ G 4¢�ªS��
�S, £S, ªS��
�S
− ¢�ªS��
�S, £3, ªS��
�S
8. 
 

(10.17) 

where: ªS��
 = �1 − �S
 �1 − �S�S
⁄ . 

10.7.3 The direct problem 

Given an oblate ellipsoid with major semi-axis a and eccentricityε , let p1 be a non-polar point on the ellipsoid 

given by its surface geodetic coordinates (λ1, ϕ1). Let a geodesic be defined with p1 as its initial point, α1 as its 
initial forward azimuth, and arc length s. This geodesic will terminate at a point p2. 
The direct problem requires finding the surface geodetic coordinates (λ2, ϕ2) of p2 and the forward azimuth α2 of 

the geodesic at the point p2. The quantity α2 + π is termed the back azimuth at p2 as it points backwards toward 
p1. 
The given parameters are restricted to − � 2⁄ < �3 < � 2⁄ ,  −� < �3 ≤ �,  and Z > 0. 
The functions L��, £3, £S
and A��, £3, £S
 are used to solve the direct problem. 

The given values in the direct problem (λ1, ϕ1) and α1 determine the Clairaut constant c, 

� = sin��3
 cos��3
 �1 − �S Z�DS��3
⁄ . 

Then using the longitude difference function, 

�S = �3 + L��, £3, £S
,  �S = arcsin�ª��
 sin £S
 , and  

�S = arctan2 B��1 − ªS��
 sinS £S , ª��
�1 − �S�S cos £SG 

where: £3 = arcsin�sin��3
 ª��
⁄ 
 , 
ª��
 = ±¶ 1 − �S1 − �S �S ,   ª��
 ≥ 0 if |�3| ≤ � 2⁄ and ª < 0 otherwise, 

and θ2 is determined by the arc length function: 

 Z = A��, £3, £S
. (10.18) 
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Equation 10.18 has a unique solution forθ2, which can be found by iterative methods.  

10.7.4 The indirect problem 

Given an oblate ellipsoid with major semi-axis a and eccentricityε, let p1 and p2 be two points on the ellipsoid 

given by their surface geodetic coordinates (λ1, ϕ1) and (λ2, ϕ2). 
The indirect problem requires finding the shortest distance s on the ellipsoid from p1 to p2.  Further, for each 

curve from p1 to p2 whose arc length is s, it is required to find the forward azimuths α1 and α2 at the points p1 
and p2 respectively. (Such curves will be geodesics, and there will be 1, 2, or infinitely many of them). 

The given parameters are restricted to −� ≤ �S − �3 ≤ �, − � 2⁄ ≤ �3 ≤ � 2⁄ ,   and − � 2⁄ ≤ �S ≤ � 2⁄ . 
The solution to the indirect problem can be determined once c, the Clairaut constant for the solution geodesic 

curve segment, is found. Dealing with the extreme c values 0 and 1 separately simplifies the process. 

The single meridional case: c = 0 if �S = �3or if either point is a pole (|�3| = � 2⁄  or |�S| = � 2⁄ ). Then if �3 <�S, the solution is: 

Z = A�0, �3, �S
 , and �3 = �S = 0. 
Otherwise ¸3 > ¸S, and the solution is: 

Z = A�0, �S, �3
 , and �3 = �S = �. 
If either point is a pole, the azimuth at that point is undefined. The solution geodesic curve segment is unique 
unless both given points are poles. In that case the solution set is the infinite set of all meridians. 

Meridional segments joined at pole: c = 0 if �S = �3 ± � and �S ≥ −�3. Then 

Z = A�0, �3, � − �S
 , �3 = 0, �S = � 

and the geodesic curve segment passes through the north pole. 

Similarly, c = 0 if �S = �3 ± � and �S < −�3. Then 

Z = − A�0, �3, −�S − �
 , �3 = �, �S = 0 

and the geodesic curve segment passes through the south pole. 

Eastward Equatorial segment: c = 1 if �3 = �S = 0 and 0 < �S − �3 ≤ �√1 − �S. Then 

Z = ¯��S − �3
, and �3 = �S = � 2⁄   
The solution is unique. 

Nearly antipodal Eastward Equatorial segment: 

If �3 = �S = 0 and the points are separated by more than the lift-off longitude (�√1 − �S < �S − �3 < �), then c 
is determined by solving the equation: 

�S − �3 = L��, 0, �
 in the interval 0 ≤ � ≤ 1.  
the solution parameters are then given by: 

Z = A��, 0, �
 , �3 = arcsin��
 , and  �S = � − �3. 
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This geodesic curve segment lies in the northern hemisphere. A second solution lies in the southern hemisphere 
in north-south symmetry. 

Typical prograde case: This case assumes that 0 < �S − �3 < � and �S ≥ |�3|, but not �3 = �S = 0. 

Define �uqw = cos �S �1 − �S sinS �S⁄  and �crit = L��uqw , �arcsin�sin �3 sin �S⁄ 
, � 2⁄ 

. 

Then c may be determined by an iterative solution of the equation: 

�S − �3 = L4�, £3��
, £S��
8 in the interval 0 ≤ � ≤ �uqw 

where: £3, £S and ª are the following functions of �: 

£3��
 = arcsin� sin ��3
/ª��
 
,   
£S��
 = º arcsin4sin��3
 ª⁄ ��
8 ,                  if �S − �3 < �crit  � 2⁄ ,                                                     if �S − �3 = �crit  � − arcsin4sin��3
 ª⁄ ��
8 ,           if �S − �3 > �crit  , and 

ª��
 = ��1 − �S
 �1 − �S�S
⁄  , 

The solution parameters are determined by c: 

Z = A4�, £3��
, £S��
8,  
�3 = arctan24��1 − �S sinS �3 , √1 − �S cos £38, and  

�S = arctan2 B��1 − �S sinS �S , �1 − �S cos £SG. 
NOTE Extremely small values of c can cause numerical instability in some implementations. 

Other prograde cases:  If 0 < �S − �3 < � and the cases above do not apply, a new pair of points p3 and p4 that 
satisfy the typical prograde case constraints can be specified using parameters from the given pair p1 and p2. 
The indirect problem solution for points p3 and p4, the shortest distance between them s, and the forward 

azimuths α3 at p3 and α4 at p4 will determine the solution for p1 and p2 as follows: 

If |�S| ≤ �3, let ½Y = ��3, �S
 and ½¾ = ��S, �3
. Then �3 = � − �¾ and �S = � − �Y. 

If |�S| ≤ −�3, let ½Y = ��3, −�S
 and ½¾ = ��S, −�3
. Then �3 = �¾ and �S = �Y. 

If |�3| ≤ −�S, let ½Y = ��3, −�3
 and ½¾ = ��S, −�S
. Then �3 = � − �Y and �S = � − �¾. 

In all these cases the arc length solution is the same, Z = Z̃, and the value of c and the multiplicity of shortest 
geodesic segments are also the same. 

Retrograde cases:  A retrograde case,�S < �3, is converted to a prograde case with ½Y = ��S, �3
 and ½¾ =��3, �S
. Then �3 = −�Y, �S = −�¾, and Z = Z̃. The value �−�
 from the prograde case is the retrograde 

solution value for c and the multiplicity of shortest geodesic segments are the same. 
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