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5 Coordinate systems 

5.1 Introduction 

Coordinate systems provide the mathematical underpinnings for spatial operations in multidimensional space. 
A coordinate system assigns coordinates to points in space and/or time. This International Standard defines 
coordinate systems within the scope of three conceptual spaces: coordinate-space, position-space, and 
object-space. Coordinate-spaces specify the sets of coordinate n-tuples that form the domains of coordinate 
systems. Position-spaces are abstract Euclidean vector spaces that provide the mathematical and geometric 
foundation needed to define spatial operations. Object-spaces are Euclidean vector spaces associated with 
specific spatial objects of interest, such as the Earth, a building, or a vehicle. Coordinate-spaces, position-
spaces, and object-spaces, and the relationships among them, are normatively defined in 5.2. 

An abstract coordinate system specifies a function, termed a generating function, which assigns unique n-
tuples in a domain in coordinate-space to points in an m-dimensional position-space (1 ≤ � ≤ � ≤ 3). 
Abstract coordinate systems are normatively defined, and many types of abstract coordinate systems are 
specified, in 5.3. 

A spatial coordinate system extends the assignment of unique coordinate n-tuples from points in a position-
space to points in an object-space. The assignment function combines an abstract coordinate system 
generating function with a normal embedding that maps the orthonormal frame within position-space to a 
corresponding orthonormal frame within object-space. Spatial coordinate systems are normatively defined in 
5.4. The relationships among coordinate-space, position-space, abstract coordinate systems, object-space, 
and spatial coordinate systems are shown in Figure 5.23. 

The ability of a spatial coordinate system to assign a unique coordinate to a point in an object-space assumes 
that the position of the point in object-space is static. In a dynamic system, that assumption may not hold 
unless the spatial coordinate system is associated with a particular moment in time. Temporal coordinate 
systems provide a standard way of associating time with a spatial coordinate system. Temporal coordinate 
systems are normatively defined in 5.5. 

5.2 Coordinate-space, position-space, and object-space 

5.2.1 Coordinate-space 

A coordinate5 is an ordered n-tuple (1 ≤ n ≤ 3). A coordinate-component6 is an individual element of a 

coordinate n-tuple. The kth coordinate-component (1 ≤ k ≤ n) is the kth component of a coordinate n-tuple. A 
coordinate system may optionally specify coordinate-component names and symbols in a specified order. In 
3D coordinate systems, the 3rd coordinate-component may be identified as the vertical coordinate-
component. 

A coordinate-space specifies a set of coordinate n-tuples that forms the domain of a coordinate system. Such 
coordinate n-tuples include Cartesian (x, y, z), polar (�, 
), cylindrical (�, 
, ℎ), and geodetic (�, �, ℎ). A 
coordinate-space may include constraints on coordinate n-tuple components in such domains. 

 

5 The ISO 19111 term for this concept is “coordinate tuple”. 

6 The ISO 19111 term for this concept is “coordinate”. 
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Figure 5.1 — A coordinate-space (including the domain for spherical coordinate n-tuples) 

Figure 5.1 illustrates the structure of a coordinate-space for 3D spherical coordinate tuples of the form (λ,θ,ρ). 
The coordinate-components of these tuples are: 

λ: longitude in radians, such that �� � � ≤ �, 

θ: spherical latitude in radians, such that � � 2� � 
 � � 2� , and  

ρ: radius in metres, such that 0 � �. 

This coordinate-space defines the domain for a spherical coordinate system (see 5.3.8.4) as a subset 
(highlighted in grey) of the coordinate-space 

5.2.2 Position-space 

Position-space of dimension m, (1 ≤ n ≤ m ≤ 3), is the Euclidean vector space ℝ� as defined in A.2. 
Mathematical concepts of ℝ� as a vector space, the point-set topology of ℝ�, the theory of real-valued 
functions on ℝ�, and algebraic and analytic geometry, including the concepts of point, line, and plane, are all 
assumed and hold. 

Position-space serves as a mathematical abstraction of object-spaces so that the methods of linear algebra 
and multivariate calculus can be applied to spatial concepts, including abstract coordinate systems and the 
computational aspects of spatial operations. The purpose of position-space is to provide flexibility in applying 
different types of coordinate systems to object-spaces for many different types of spatial objects of interest. 

The position of a point is the displacement of that point with respect to a designated reference point, called the 
origin. Each point in Euclidean vector space is associated with the position vector that extends from the origin 
to that point with length equal to the Euclidean distance between the origin and that point. Thus, points in 
Euclidean space and position vectors with respect to the origin are equivalent concepts. The position of an 
object is typically expressed in terms of the position of a representative point within the object. 

A direction in a Euclidean vector space is represented by a unit vector. A vector quantity, expressing a 
physical measurement such as velocity or acceleration (at a given instant in time), is represented by a 
direction vector combined with a magnitude. Velocity is a vector quantity that expresses the rate of change of 
position. Acceleration is a vector quantity that expresses the rate of change of velocity. 

An ordered set of m mutually perpendicular unit vectors forms a canonical Cartesian basis for position-space. 
This Cartesian basis allows positions, directions, vector quantities, and distance measurements in position-
space to be quantified. 
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Figure 5.2 — 3D position-space and its canonical Cartesian basis 

Figure 5.2 illustrates 3D position-space, showing its origin, and the unit vectors that form its canonical 
Cartesian basis.  

Position vectors in 2 and 3 dimensions are denoted as ��, ��� ≡  ��! and ��, �, "�� ≡ #��"$, respectively (see A.2). 

These components, unless otherwise indicated, are specified with respect to the canonical Cartesian basis 
and origin. 

The canonical origin for ℝ% is the zero vector & ' �0,0��. The canonical Cartesian basis vectors for ℝ% are () '�1,0��, (% ' �0,1��. 
The canonical origin for ℝ+ is the zero vector & ' �0,0,0��. The canonical Cartesian basis vectors for ℝ+ are () ' �1,0,0��,  (% ' �0,1,0��,  (+ ' �0,0,1��. 
5.2.3 Orthonormal frames 

An orthonormal frame within a Euclidean vector space, in 2 or 3 dimensions, consists of an origin vector - and 

an ordered set of mutually perpendicular unit basis vectors ., /, and, in the 3D case, 0. These vectors form the 
basis for a Cartesian coordinate system. Each of the vectors -, ., / (and 0) is specified in the Euclidean vector 

space. Any vector 1 with respect to the Euclidean vector space origin corresponds to the vector 12 ' 1 � - with 

respect to the orthonormal frame origin -. In the 3D case, 12 ' 3. 4 5/ 4 60 in terms of the orthonormal frame 

basis vectors. The 3-tuple �3, 5, 6� is termed the coordinate of 12. In the 2D case,  12 ' 3. 4 5/ and the 
coordinate is the tuple �3, 5�. In terms of the Euclidian vector space, 1 ' - 4 3. 4 5/ 4 60 in the 3D case, and 1 ' - 4 3. 4 5/ in the 2D case. The 3D case is depicted in Figure 5.3.  
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Figure 5.3 — A right-handed orthonormal frame 

EXAMPLE  The canonical Cartesian basis for 3D position-space is an orthonormal frame specified with - ' &, . '(7, / ' (8, 0 ' (9. 

A 3D orthonormal frame is termed right-handed if the vertices of the triangle formed by its basis unit vectors 
are in clockwise order when viewed from the origin, as defined in ISO 80000-2, and shown in Figure 5.3. In 
this International Standard, all 3D orthonormal frames shall be right-handed. 

5.2.4 Object-space 

Object-space is the Euclidean vector space (a universe7) that is fixed to a designated spatial object of 
interest. Object-space provides the application domain context for spatial concepts including positions, 
directions, vector quantities, and orientations.  

 

Figure 5.4 — Object-spaces for the Earth and for a CAD model 

The spatial objects of concern in this International Standard include physical and abstract objects, as 
illustrated in Figure 5.4. Physical objects are real-world objects, such as Earth or a building. The length of one 

 

7 The set of all continuations of a spatial object is termed the universe of the object. In physics, this is termed “the space of 

the object”. [EINS] 
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metre has intrinsic meaning in the object-space of a physical object. Abstract objects are conceptual objects 
including engineering, mathematical, and virtual models. A length of one metre does not have intrinsic 
meaning in the object-spaces of abstract objects. Thus, to relate abstract object-spaces to other (physical or 
abstract) object-spaces, each abstract object-space is required to have a designated length scale. 

At any given instance in time, the position of a point in object-space is fixed with respect to the spatial object 
of interest. This is done either by a time-invariant constant or a time-dependent function. If points and the 
spatial object of interest have a time-dependent relationship, the positions of the points shall be qualified by a 
time value. Thus, at a specified time, the points and the spatial object of interest have a fixed spatial 
relationship. 

EXAMPLE 1 The Sun and the Earth are both physical objects. In the object-space of the Sun, the Sun is the spatial 

object of interest and is fixed and the Earth moves according to a time dependent function. In the object-space of the 
Earth, the Earth is the spatial object of interest and is fixed and the Sun moves according to a different time dependent 

function. 

EXAMPLE 2 At any given time the International Space Station (ISS) has a unique and unambiguous position in the 

object-space of the Earth.  

EXAMPLE 3 At any given time each component of the ISS has a fixed position in the object-space of the ISS. 

EXAMPLE 4 A solar collector component of the ISS was manufactured in compliance with an engineering model. The 
engineering model was designed in the object-space of an abstract CAD/CAM model. The physical solar collector was 

constructed in its own physical object-space. 

An object-space is a Euclidian space. In general, however, an object-space is not a vector space. Once a 
point in object-space is designated as an origin point, it becomes a vector space with respect to that origin and 
all points in the object-space are vectors, each with length and direction given as the distance and direction of 
the point from the origin. 

5.2.5 Normal embeddings 

A normal embedding is a distance-preserving function mapping vectors in position-space to points in an 
object-space of the same dimension. A function E from position-space to object-space is distance-preserving 
if for any two positions p and q in position-space, the Euclidean distance d(pppp, qqqq) is equal to the measured 
distance in object-space from E(p) to E(q) in metres. The distance-preserving property implies that a normal 
embedding is one-to-one and continuous. Normal embeddings also preserve angles and areas. 

 

Figure 5.5 — A normal embedding that maps position-space to an object-space 
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Position-space together with a normal embedding provides a specific algebraic model of an object-space by 
determining an orthonormal frame within the object space. This frame is termed the embedded frame and is 
determined as follows. In the 3-dimentional case, as shown in Figure 5.5, the position-space orthonormal 
frame is formed by the origin 0 and unit basis vectors e1, e2, and e3. The normal embedding E forms an 
orthonormal frame within object-space with origin E(0) and basis vectors E(e1), E(e2), and E(e3). Since E is 
distance preserving, these vectors are orthogonal unit vectors, thus an embedded frame is an orthonormal 
frame and E is then an isomorphism between position-space and object-space. A normal embedding of a 3D 
position-space is right-handed if this frame is a right-handed frame. Normal embeddings for 2-dimensional 
object-space form orthonormal frames in a similar way. 

The point E(0) is termed the origin of the normal embedding  E. The point E(e1) is the xE-axis unit point of the 
normal embedding E. Depending on the dimension of position-space, E(e2) is the yE-axis unit point and E(e3) is 
the zE-axis unit point. Normal embeddings are used to relate abstract coordinate systems for position-space to 
spatial coordinate systems for an object-space (see 5.4). 

There are infinitely many normal embeddings of an n-dimensional position-space for a given object-space, 
depending on placement of the origin and direction of the axes. 

There are infinitely many ways to select the origin of the embedding in the object-space. The origin can be 
located at any point within the spatial object of interest, at any point on its surface, or at any point nearby in 
space. Common selections include the centre of mass of the object, its geometric centre, or a corner of the 
object (assuming it has corners) or its bounding volume such that the object is completely within the first 
octant. 

Given a selected origin, there are infinitely many ways to orient the axes. If the object is a celestial body, the 
axes could be aligned with its rotational axis, its magnetic field axis, or the direction of the closest star (such 
as the Sun). If the object is a vehicle, the axes could be aligned based on its direction of forward motion or 
other common reference orientations. If the object is located on, or near, the surface of the Earth, common 
selections include east-north-up (ENU) and north-east-down (NED). 

 
Figure 5.6 — Two distinct normal embeddings that map position-space to an object-space 

Figure 5.6 illustrates two distinct normal embeddings for a given object-space, each determining a different 
embedded frame. Each embedding assigns the origin (0) to different points on the spatial object of interest 
(=7(&) and =8(&), respectively), and assigning the basis vectors ((7, (8, (9) to different directions 

(=7�(7�, =7�(8�, =7�(9� and =%�(7�, =%�(8�, =%�(9�, respectively)) relative to the object, providing two distinct 
algebraic models of that object-space. In the figure, the two embedded frames are depicted in two different 
colours. In the object space, >7 and >8 refer to the same point 1 ≡ =)�>)�� ≡ =%�>%� on the object, expressed 
in each of the two embedded frames. 
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A similarity transformation is used to express the relationship between one embedded frame with respect to a 
second embedded frame within the same object-space A similarity transformation consists of a translation, a 
rotation, and/or a scaling operation. If E1 and E2 are two normal embeddings, there exists a similarity 
transformation ?=8←=7 such that E2 is the composition of E1 with ?=8←=7, i.e., =% = ?=8←=7 ∘ =). This is 

depicted in Figure 5.6, where a point 1 in object-space will have vector coordinates ��), �), ")�=7 and ��%, �%, "%�=8 in the EEEE1111    and EEEE2222 embedded frames respectively. The similarity transformation ?=8←=7, operating on 

object-space, that will translate EEEE1111�0000� to EEEE2222�0000� and align the EEEE1111 basis axes with EEEE2222 basis axes will also perform a 

change of basis operation: ��%, �%, "%�=8 = D���), �), ")�=7�. Thus, similarity transformations can be used in the 
transformation of coordinates between orthonormal frames. Similarity transformations are addressed in 
greater detail in 7.3.2. 

The method of specifying a normal embedding varies across disciplines and application domains. In some 
application domains, a normal embedding is implicitly defined by the specification of the origin point and axis 
directions. In the case of geodesy, an origin point at the centre of the Earth cannot be directly specified. 
Instead, its location is implied by specifying other geometric entities from physical measurements. An object 
reference model (see 7.4) implicitly identifies a unique normal embedding in this manner. Other disciplines 
use a variety of techniques to either implicitly or explicitly define a normal embedding. This International 
Standard encapsulates these techniques within the concepts of reference datum and object reference model.  

5.3 Abstract coordinate systems 

5.3.1 Introduction 

An abstract coordinate system assigns a unique coordinate n-tuple to each point in a range of position vectors 

in an m-dimensional Euclidean vector space �1 ≤ n ≤ m ≤ 3� termed position-space, which has a canonical 
basis that defines an orthonormal frame. The assignment function is termed the generating function of the 
abstract coordinate system. The range may encompass the entire vector space or a proper sub-set, such as a 
surface or a curve. 

Abstract coordinate systems are formally defined in 5.3.2. Abstract coordinate systems are characterized by 
type (5.3.3) and properties (5.3.5). In addition, abstract coordinate systems for 3D position-space generate 
coordinate-component surfaces (5.3.4). Localization operators modify abstract coordinate systems by shifting 
the vector space origin and changing axis directions (5.3.6). Map projections and augmented map projections 
are treated as a special case of abstract coordinate systems and have additional classifications and 
properties, as well as several functions unique to map projections (5.3.7). The elements for the specification of 
an abstract coordinate system, along with standardized abstract coordinate systems, are specified in 5.3.8. In 
this International Standard the term “coordinate system (CS)”, if not otherwise qualified, is defined to mean 
“abstract CS.” 

This International Standard takes a functional approach to the construction of coordinate systems. Annex A 
provides a concise summary of mathematical concepts and specifies the notational conventions used in this 
International Standard. In particular, Annex A defines the terms interior, one-to-one, smooth, smooth surface, 
smooth curve, orientation-preserving, and connected. Additionally, a newly introduced concept, replete, will be 
used. A set D is replete if all points in D belong to the closure of the interior of D (see Annex A). A replete set 
is a generalization of an open set that allows the inclusion of boundary points. Boundary points are important 
in the definitions of certain coordinate systems. 

5.3.2 Definition 

An abstract coordinate system (CS) assigns a unique coordinate to each point in a subset of position-space 
(5.2.2). An abstract Coordinate System shall be comprised of: 

a) a CS domain in n-dimensional coordinate-space, (1 ≤ n ≤ 3), 

b) a generating function, and 

c) a CS range in m-dimensional position-space, (n ≤ m ≤ 3), 
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where: 

a) The CS domain shall be a connected replete domain in n-dimensional coordinate-space, the space of 
n-tuples. The elements of the CS domain are coordinates. 

b) The generating function assigns each coordinate to a point in position-space. It shall be a one-to-one, 
smooth function (see Annex A.4) from the CS domain onto the generating function range. 

c) The generating function range shall be termed the CS range. When n = 2 and m = 3, the CS range 

shall be a subset of a smooth surface8. When n = 1 and m = 2 or 3, the CS range shall be a subset of 

an implicitly specified smooth curve9. The elements of the CS range are positions. 

The coordinate of a position p shall be the unique coordinate whose generating function value is p. 

The generating function may be parameterized. The generating function parameters (if any) shall be termed 
the CS parameters. 

The inverse of the generating function shall be termed the inverse generating function. The inverse generating 
function is one-to-one and is smooth in the interior of the CS domain, except at points in the image of the CS 
domain boundary points where it may be discontinuous. 

 

Figure 5.7 — Abstract equatorial spherical coordinate system example 

Figure 5.7 illustrates the components of the Equatorial Spherical abstract coordinate system. 

NOTE 1 The generating function of a CS is often specified by an algebraic and/or trigonometric description of a 
geometric relationship (see 5.3.3 Example 2). There are also CSs that do not have geometric derivations. The Mercator 

map projection (see Table 5.18) is specified to satisfy a functional requirement of conformality (see 5.3.7.3.2) rather than 

by a geometric construction. 

 

8 The generating function properties and the implicit function theorem together imply that for each point in the interior of 

the CS domain, there is an open neighbourhood of the point whose image under the generating function lies in a smooth 
surface. This requirement specifies that there exists one smooth surface for all of the points in the CS domain. This 

requirement is specified to exclude mathematically pathological cases. 

9 The generating function properties and the implicit function theorem together imply that for each point in the interior of 

the CS domain, there is an open neighbourhood of the point whose image under the generating function lies in a smooth 
curve. This requirement specifies that there exists one implicitly-defined smooth curve for all the points in the CS domain. 

This requirement is specified to exclude mathematically pathological cases. 
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5.3.3 Coordinate system types 

The coordinate-space and position-space dimensions characterize an abstract CS by CS type as defined in 
Table 5.1. 

Table 5.1 — Coordinate system types 

CS type 
Dimension of 

coordinate-space 
Dimension of 

position-space 

3D 3 3 

surface  2 3 

curve10  1 3 

2D 2 2 

plane curve10 1 2 

1D 1 1 

For brevity, a CS may be referred to by its CS type as a 3D CS, surface CS, curve CS, 2D CS, plane curve 
CS, or 1D CS. 

EXAMPLE 1 The identity function on 3D Euclidean space is the generating function of the Euclidean 3D coordinate 

system. Both the coordinate system domain and range sets are the entire Euclidean space. In this case, coordinate-space 
and position-space are one and the same. The Euclidean 3D coordinate system (see 5.3.8.2) is a linear coordinate 

system. 

EXAMPLE 2  The polar coordinate system is an example of an abstract coordinate system of coordinate system type 

2D that is defined with the generating function: 

EF��,  
�G = ��, ���
 

where: � = � cos�
� ,   � = � sin�
�. 

 
Figure 5.8 — Polar CS geometry 

The geometric and trigonometric relationships for this generating function are illustrated in Figure 5.8 

The CS domain in coordinate-space is H(�,  
� I� ℝ%|0 < �, 0 ≤ 
 < 2�K ∪ H�0,0�K. 
The CS range in position-space is ℝ%. 

 

10 The ISO 19111 concept of a linear coordinate system, defined as “a one-dimensional coordinate system in which a 

linear feature forms the axis”, is similar in some respects to the curve CS and plane curve CS concepts.  This ISO 19111 

concept is distinct from the linearity property of abstract coordinate systems (see 5.3.5.1). 
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Figure 5.9 — The Polar CS generating function 

This generating function, G, is illustrated in Figure 5.9. The grey boxes with lighter grey edges in this figure represent the 

fact that the range in position-space extends indefinitely, and that the domain in coordinate-space extends indefinitely in 

the direction of the ρ-axis. The dashed grey edges indicate an open boundary, and a solid edge is a closed boundary. This 
CS range, CS domain, and generating function define an abstract CS representing polar coordinates as defined in 

mathematics [EDM, “Coordinates”]. This coordinate system is fully specified in 5.3.8.27 as the Polar coordinate system. 

NOTE 2   In the special case where 1) the CS domain and CS range are both ℝM and 2) the function is the identity 

function, this approach to defining coordinate systems reduces to the usual definition of the Euclidean coordinate system 
on ℝM where each point is identified by an n-tuple of real numbers [EDM] (see Table 5.8, Table 5.29 and Table 5.35). 

 

Figure 5.10 — The geodetic coordinate system geometric and trigonometric relationships 

EXAMPLE 3 The geodetic coordinate system for positions in the space containing an oblate ellipsoid is an example of 
a coordinate system of coordinate system type 3D. The geometric and trigonometric relationships for the generating 

function of this coordinate system are illustrated in Figure 5.10. The coordinate system parameters are the major and 

minor semi-axis values a and b. This coordinate system is fully specified in 5.3.8.8 as the Geodetic 3D coordinate system. 
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Figure 5.11 — Surface geodetic CS geometric and trigonometric relationships 

EXAMPLE 4 The geodetic coordinate system for positions on the surface of an oblate ellipsoid is an example of a 
coordinate system of coordinate system type surface. The geometric and trigonometric relationships for the generating 

function of this coordinate system are illustrated in Figure 5.11. The generating function for this coordinate system 
depends on the major and minor semi-axis parameter values a and b. These are the coordinate system parameters. This 

coordinate system is fully specified in 5.3.8.18 as the Surface Geodetic coordinate system. 

5.3.4 Coordinate-component surfaces and curves 

5.3.4.1 Introduction 

It is useful in some applications to reduce the dimensionality of a coordinate system by fixing the values of one 
or more of its coordinate-components. The resulting coordinate-component surfaces and curves are 
particularly useful when dealing with curvilinear coordinate systems. Thus, fixing the ellipsoidal height 
coordinate-component (h) of a 3D geodetic coordinate system to zero results in an induced surface geodetic 
coordinate system that represents positions on the surface of the ellipsoid modelling the Earth (see Figure 
5.11). This International Standard provides functions for creating coordinate-component surfaces and curves, 
and specifies several standard induced surface coordinate systems. 

The generating function of a 3D CS is a function of its three coordinate-components. Keeping one of the 
coordinate-components fixed (to a constant value) and varying the other two restricts the range of the 
generating function to a surface. This restricted generating function may be viewed as a surface CS 
generating function. Similarly, keeping two of the three coordinate-components fixed restricts the range of the 
generating function to a curve, and the restricted generating function may be viewed as a curve CS generating 
function. These observations motivate the definitions of coordinate-component surfaces and curves. The 
coordinate-component surface and coordinate-component curve concepts are required to specify induced CS 
relationships, to define the special coordinate curves parallel and meridian, and to define CS handedness. 
Coordinate-component curves are also used to define localized frames. 

5.3.4.2 Coordinate-component surfaces and induced surface CSs 

A coordinate-component surface is the surface that results from fixing the value of one of the three coordinate-
components of a 3D CS while letting the values of the other two coordinate-components vary. A coordinate-
component surface is identified by the ordinal number (1st, 2nd, or 3rd) of the coordinate-component that is 
fixed. 

If G is the generating function of a 3D CS, and cccc ' (u0, v0, w0� is in the interior of the CS domain D, the three 

coordinate-component surfaces at c are defined by: 
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R)�E�F�5,  6�G = EF�3S, 5, 6)G,R%�E�F(3,  6�G = EF�3, 5S, 6)G,  andR+�E�F(3,  5� G ' EF(3, 5, 6S)G.
 

The CS domain for R)�E� is the connected component of T�5,  6� in ℝ2U  (30, 5, 6) in VW which contains (v0, w0�.  

The CS domain for R%�E� is the connected component of T�3,  6� in ℝ2U  F3, 50, 6G in VW which contains (u0, w0�. 

The CS domain for R+�E� is the connected component of T�3,  5�  in ℝ2U  F3, 5, 60G in VW which contains (u0, v0�. 

The CS ranges of these generating functions are, respectively, the 1st, 2nd, and 3rd coordinate-component 
surface at c. 

Each of these surface CSs shall be termed, respectively, the 1st, 2nd, and 3rd induced surface CS  at c. 

EXAMPLE 1 Coordinate-component surface: The Geodetic 3D CS is specified in Table 5.14 with CS parameters a and 

b. The 3rd coordinate-component surface at coordinate > = �0,0,0� is the surface of an oblate ellipsoid with major semi-axis 

a and minor semi-axis b.  

Induced surface CS: The Surface Geodetic CS specified in Table 5.24 is the 3rd induced surface CS for the Geodetic 3D 

CS at c. 

EXAMPLE 2 Coordinate-component surface: The Lococentric Cylindrical CS is specified in Table 5.17. The 3rd 

coordinate-component surface at coordinate > ' (0,0,0� is a plane.  

Induced surface CS: The Lococentric Surface Polar CS specified in Table 5.28 is the 3rd induced surface CS for the 

Lococentric Cylindrical CS at c. 

Several CSs of CS type surface that are specified in this standard are each an induced surface CS for a 
corresponding 3D CS. 

5.3.4.3 Coordinate-component curves 

A coordinate-component curve is the curve that results from fixing the values of two of the three coordinate-
components of a 3D CS while letting the value of the other coordinate-component vary, or from fixing the 
value of one of the two coordinate-components of a surface or 2D CS while letting the value of the other 
coordinate-component vary. A coordinate-component curve is identified by the ordinal number (1st, 2nd, or in 
the 3D case 3rd) of the coordinate-component that varies. 

The CS type 3D case: 

If G is the generating function of a 3D CS, and cccc ' (u0, v0, w0� is in the interior of the CS domain D, then the 
three coordinate-component curves at c are defined by: 

X)�E��3� = EF�3, 5S, 6S)G, X%�E�(5) ' EF(3S, 5, 6S)G, and X+�E�(6) ' EF(3S, 5S, 6)G. 

The CS domain for C1�E� is the connected component of  H3 in ℝ|  (3, 50, 60� in VK which contains u0.  
The CS domain for C2�E� is the connected component of  H5 in ℝ|  (30, 5, 60� in VK which contains v0. 
The CS domain for C3�E� is the connected component of  H6 in ℝ|  (30, 50, 6) in VK which contains w0. 

The CS ranges of these functions are, respectively, the 1st, 2nd, and 3rd coordinate-component curve at c. 

NOTE   The intersection of two coordinate-component surfaces at c is (the locus of) a coordinate-component curve:  X) = R% ∩ R+,  X% ' R) ∩ R+, X+ ' R) ∩ R%. 
The CS type surface and CS type 2D cases: 

If G is the generating function of a surface CS or 2D CS, and cccc ' (u0, v0� is in the interior of the CS domain D, 
then the two coordinate-component curves at c are defined by: 
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X)�E��3� = EF�3, 5S)G, and X%�E�(5) ' EF(3S, 5)G. 

The CS domain for C1�E� is the connected component of H3 in ℝ|  (3, 50� in VK which contains u0.  
The CS domain for C2�E� is the connected component of H5 in ℝ|  (30, 5) in VK which contains v0. 

The CS ranges of these functions are, respectively, the 1st and 2nd coordinate-component curve at c. 

EXAMPLE   If > = ��,  
S� is in the interior of the CS domain of the Polar CS (5.3.3 Example 2), then the first 

coordinate-component curve is     X1�E�(
) = E \F�0,  
G] = ^�0 cos 
 , �0 sin 
_⊤
, and the 2nd coordinate-component curve is  

X2�E�(
) = EF(�,  
0)G = �� cos 
0 , ρ sin 
0�⊤. 

If G is the generating function for the Geodetic 3D CS or the Surface Geodetic CS, and > ' (�S, �S, 0) in the 

3D case or > ' (�S, �S� in the surface case, then (see Figure 5.12): 

a) the 1st coordinate-component curve at c shall be termed the parallel at c, and 

b) the 2nd coordinate-component curve at c shall be termed the meridian11 at c. 

The meridian at > = �0,0, 0) or �0,0) shall be termed the prime meridian12. 

The parallel at > ' (0,0, 0) or �0,0) shall be termed the equator. 

 
Figure 5.12 — Geodetic 3D CS geometry, and coordinate-component surface and curves 

 

11 ISO 19111 defines the term meridian as “the intersection between an ellipsoid and a plane containing the shortest axis 

of the ellipsoid”. 

12 ISO 19111 defines the term prime meridian as “the meridian from which the longitudes of other meridians are 

quantified”. In Clause 7, most, but not all, oblate ellipsoid Earth object reference models associate the Greenwich meridian 

with the prime meridian (see 7.4.5). 
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5.3.5 CS properties 

5.3.5.1 Linearity 

A CS with generating function G is a linear CS if the CS domain is all of ℝM and G is a linear or affine function 

with respect to the vector space structure of ℝM and position-space.  

A curvilinear CS is a non-linear CS. In particular, Geodetic 3D CS and Surface Geodetic CS (Tables 5.14 and 
5.24) and every map projection or augmented map projection CS (see 5.3.7) are curvilinear. 

5.3.5.2 Orthogonality 

A 3D CS, surface CS, or 2D CS with generating function G is orthogonal if the angle between any two 
coordinate-component curves at p =G(c) is a right angle when c is any coordinate in the interior of the CS 
domain. 

EXAMPLE   The Polar CS of 5.3.3 EXAMPLE 2 is an orthogonal CS of type 2D. In this example the CS domain 

contains the coordinate (0,0) as a boundary point. 

5.3.5.3 Linear CS properties: Cartesian, and orthogonal 

In a linear CS, the kth coordinate-component curve is a straight line. The kth coordinate-component curve at the 

origin q ' G(0) of a linear CS is the kth-axis where 0 is the all zero coordinate-component n-tuple in ℝM. 

In a linear CS, if the angles between coordinate-component curves at any point are (pairwise) right angles, 

then that is the case at all points. In particular, a linear CS is orthogonal13 if the axes are orthogonal. 

A linear CS that is also orthogonal is a Cartesian CS14. 

EXAMPLE   The Lococentric Euclidean 3D CS specified in Table 5.9 is a Cartesian CS since it is a linear CS and its 

coordinate-component curves intersect at right angles. 

5.3.5.4 CS right-handedness and coordinate-component ordering 

Given a 3D CS and a coordinate > ' (3S, 5S, 6S) in the interior of the CS domain, the coordinate-component 

curves C1, C2, and C3 at p '''' G(c) determine an ordered set of three tangent vectors: 

0) ' bX)b3 cdedf , 
0% ' bX%b5 cgegf , and 
0+ ' bX+b6 chehf . 

An orthogonal 3D CS is a right-handed CS if for any coordinate c in the interior of the CS domain, the ordered 
set of tangent vectors t1, t2, and t3 form a right-handed coordinate system as defined in IS0 80000-2. The right-
handed CS property is determined, in part, by the order of the coordinate-components in the coordinate 3-

 

13 Some publications use “rectangular” to denote an orthogonal linear CS, and “oblique” to denote a non-orthogonal linear 

CS. 

14 ISO 19111 defines Cartesian coordinate system as “a coordinate system that gives the position of points relative to n 

mutually-perpendicular axes”.  
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tuple. The order of the coordinate-components in the specification of an orthogonal 3D CS shall be restricted 
to an ordering that ensures a right-handed CS. This restriction is required for uniform treatment of directions, 
rotations, and orientations (see Clause 6 and 10.5). 

The coordinate-component ordering in the specification of a surface CS that is induced on a coordinate-
component surface of a 3D CS, shall use the coordinate-component order of the inducing 3D CS. 

EXAMPLE 1 The Geodetic 3D CS (Table 5.14) coordinate-component ordering (�, �, ℎ) ensures that the CS is right-

handed. A similar ordering for the Planetodetic 3D CS (Table 5.15) is not right-handed because the tangent to 

Planetodetic longitude points opposite to the direction of the tangent to Geodetic longitude. Instead, the coordinate-
component ordering (�, �, ℎ) is specified to satisfy the right-handed CS requirement.  

EXAMPLE 2 The Surface planetodetic CS (Table 5.25) coordinate-component ordering (�, �) is determined by the 

coordinate-component ordering (�, �, ℎ) of the Planetodetic 3D CS (Table 5.15) which induces the Surface planetodetic 

CS as its 3rd coordinate-component surface.  

5.3.6 CS localization 

5.3.6.1 Introduction 

Many applications need to perform operations involving multiple related coordinate systems. The relationships 
between coordinate systems used in an application often reflect corresponding relationships among the 
objects of interest within the application context. This International Standard provides a set of parameterized 
localization operators that can be used to translate and/or rotate a coordinate system within position-space. It 
is useful in some applications to reduce the dimensionality of a 3D coordinate system by fixing the values of 
one or more of its coordinate-components, resulting in an induced surface coordinate system (5.3.4). These 
two mechanisms can be combined to create localized induced surface coordinate systems. 

5.3.6.2 Localization operators 

A coordinate system can be translated and/or rotated to realize a local variant. A localization operation is used 
to accomplish this. The generating function of the original CS is composed with an appropriate localization 
operator to specify the generating function of the local variant CS. This method of specifying a local variant CS 
is termed CS localization. The result is termed a localized CS. 

Three parameterized operators, termed localization operators, that operate on or between position-spaces are 
defined in Table 5.2. The inverses of these operators are defined in Table 5.3. The vectors in these tables, 
termed localization parameters, are vectors in (the range) position-space where q denotes the local origin 

(lococentre), and unit vectors rrrr and s denote the primary and secondary axis directions respectively. The 

localization operators require r and s to be orthonormal vectors, that is, r and s are orthogonal (. • / ' 0) and 
normal (‖.‖ = ‖/‖ = 1). 

Table 5.2 — Localization operators 

Localization 
operator 

Domain Range Localization parameters Operator definition 

l+m ℝ+ ℝ+ q, r, s, in ℝ+ 
r and s are orthonormal 

l3D���, �, "��) ' - 4 �. 4 �/ 4 "0,
where:   0 ' . × /.  

lSurface ℝ% ℝ+ q, r, s, in ℝ+ 
r and s are orthonormal 

lSurface���, ���) ' - 4 �. 4 � 

l2D ℝ% ℝ% q, r, s, in ℝ%  
r and s are orthonormal 

l2D���, ���) ' - 4 �. 4 �/ 
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Table 5.3 — Localization inverse operators 

Localization 
operator 

Inverse operator definition 

l3D l3Dt)(1) ' F(1 � -) • .G() 4 F(1 � -) • /G(% 4 F(1 � -) • 0G(+ lSurface lSurfacet) (1) ' F(1 � -) • .G() 4 F(1 � -) • /G(% l2D l2Dt)�1� = F�1 − -� • .G() + F�1 − -� • /G(% 

There are several forms of CS localization depending on CS type and localization operator. A 3D or surface 
CS with generating function G is localized by composing G with the l3D localization operator. The localized CS 
is of the same CS type (CS type 3D or CS type surface, respectively). Its generating function is Eu ≡ l3D ∘ E 
and has the same CS domain as G. 

There are two localization operators for a 2D CS. One uses localization parameters in ℝ+ and produces a 

surface CS. The other uses localization parameters in ℝ% and produces a 2D CS. 

a) A 2D CS with generating function G is localized by composing G with the lSurface localization operator. 

The localized CS is a surface CS. Its generating function is Eu ≡ lSurface ∘ E and has the same CS 
domain as G. 

b) A 2D CS with generating function G is localized by composing G with the l%m localization operator. 

The localized CS is a 2D CS. Its generating function is Eu ≡ l2D ∘ E and has the same CS domain as 
G. 

The localization operator parameter q shall be termed the lococentre. A localized CS may be termed a 
lococentric CS. 

The CS generated by GL is related to the original CS in that the geometry of the coordinate curves and 

surfaces are similar to that generated with G but with the geometry shifted over in position-space with a 

translation by q and oriented with respect to the ., /, and 0 = . × / basis vectors instead of the (),  (%,  (+ 

basis vectors. This use of localization operators specifies a family of CSs with generating functions GL 

parameterized by the localization parameters -, ., /. This employment of lococentric operators is used below 
in the specification of all the CSs that have “LOCOCENTRIC_” as a name prefix.  

NOTE 1 CS localization preserves the following CS properties: linear/curvilinear, orthogonal, and Cartesian. 

The relationship between a CS type and its localized version(s) is summarized in Table 5.4. 

Table 5.4 — Localized CS type relationships 

CS type Localization 
operator 

Resulting lococentric 
CS type 

3D l3D 3D 

Surface l3D 
Surface 

2D 
lSurface 
l2D 2D 

NOTE 2   In the case of 3D position-space, a set of localization parameters -, .,  and / together with 0 = . × / specifiy 

an orthonormal frame with - as its origin and ., /, 0 as its basis vectors (see 5.2.3). In effect, a localization operator 

transforms the geometry of the CS surfaces and coordinate-component curves with respect to the canonical frame of 
position-space to the same geometry with respect to the -, ., /, 0  orthonormal frame by translating the position-space 

origin to - and rotating the axes to align with ., /, 0.  
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For creating a localized induced surface CS, the operations of localization and inducing a surface CS (see 
5.3.4.2) are order-independent in the following way. 

Consider X, a 3D CS with generating function v3D. For a given set of localization parameters, and a given 
value n =1, 2, or 3, a localized induced surface CS at coordinate c may be derived from X by two methods. 

In one method, first X induces SX, the nth induced surface CS for X at c with generating function wM�v3D�. Then 

SX is localized to LSX, a surface CS with generating function xSurface ∘ wM�v3D�. 
In the other method, first X is localized to LX, a 3D CS with generating function x3D ∘ v3D. Then LX induces 

SLX, the nth induced surface CS for LX at c with generating function wM�x3D ∘ v3D�. 
The two resulting localized surface CSs, LSX and SLX, are identical with generating functions xSurface ∘wM�v3D� = wM�x3D ∘ v3D�  (see Figure 5.13). For examples, see Table 5.26 Note 1, Table 5.27 Note 2 and Table 
5.28 Note 2. 

 

Figure 5.13 — Induced surface CS with localization 

5.3.6.3 Localized frame and local tangent frame at a coordinate 

The localization parameters -, .,  and / together with 0 = . × / specifiy an orthonormal frame with - as its 

origin and ., /, 0 as its basis vectors (see 5.2.6.2 Note 2). Conversely, given an orthonormal frame within 
position-space, the orthonormal frame origin and it’s first two basis vectors may be used as localization 
parameters,    -, ., / respectively. The choice of these parameters and/or an orthonormal frame is often 
dependent on the intended application.  

A 3D Cartesian CS with generating function E has an intrinsic vector space structure. Given a coordinate > 

and two mutually perpendicular vectors, with coordinates >y and >/, an orthonormal frame may be specified 

with position-space vectors -, ., /, 0, where: 

- = E(>), . = FE(>.) − E(&)G/{FE(>.) − E(&)G{, / = FE(>/) − E(&)G/{FE(>/) − E(&)G{,  and 0 = . × /. 
An orthonormal frame constructed in this way is termed the localized frame at coordinate > with parameters >y and >/, and the CS is termed the reference CS of the localized frame. 

The axis directions in a localized frame are not required to be parallel to any of the reference CS axes, thus a 
localized frame has all the generality of an orthonormal frame while providing the ability to specify the required 
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position-space vectors using a Cartesian CS directly. With restricted axis directions, any orthogonal 3D or 
surface CS may be used to specify an orthonormal frame.  

EXAMPLE 1 Consider the case of a point - on an ellipsoid in which an orthonormal frame is desired which will have the 

surface point as its origin, the first basis vector . points in the direction of increasing longitude along the parallel at - (local 

east), the second basis vector    / points in the direction of increasing latitude along the meridian at - (local north), and the 

third basis vector 0  points away from the interior of the ellipsoid in the direction perpendicular to the surface at - (local up) 

(see Figure 5.14). In this case, the Geodetic 3D CS with the ellipsoid semi-axis parameters provides a convenient way of 
computing the orthonormal frame vectors. If > = (�, �, 0) is the longitude, latitude, and height coordinate of point   - =EGeodetic(>),  the vectors ., /, 0 are computed as the normalised tangent vectors on the 1st, 2nd, and 3rd coordinate-

component curves, respectively, at >.  

The ability to use the generating function of orthogonal CSs to compute vectors aligned to the CS coordinate 
curves at a point motivates the definition of a type of orthonormal frame whose primary and secondary axes 
are tangent to a coordinate surface. 

If G3D is the generating function of an orthogonal right-handed 3D CS and > = (3S, 5S, 6S) is a coordinate in the 

interior of the CS domain, an orthonormal frame is specified by the position space vectors -, ., /, and 0 where: 

- = E3D(>) is the frame origin, 

. = 0) ‖0)‖� , 
/ = 0% ‖0%‖� , and 
0 = 0+ ‖0+‖� ,  
where 0| , I = 1, 2, 3 is the tangent vector on the i-th coordinate-component curve at > (see 5.3.5.4). 

The orthogonal and right-handed properties of the CS implies that the normalized vectors ., /, and 0 form a 
right-handed orthonormal frame at origin point - ' E3D(>) and that 0 ' . × ssss. The frame vectors ., and / span 

a plane that is tangent at point    - to the third coordinate surface R+�E3D�F(3, 5)G at coordinate >. This frame is 

termed the local tangent frame at coordinate >, the CS is termed the reference CS of the local tangent frame, 

and ., and / are the local tangent vectors at >. A local tangent frame is a specialized form of localized frame. 

This notion extends to orthogonal surfaces CSs. If GSurface is the generating function of an orthogonal surface 
CS and > ' (3S, 5S) is a coordinate in the interior of the CS domain, a local tangent frame is specified by the 

position space vectors -, ., /, and 0 where: 

- ' ESurface(>) is the frame origin, . ' 0) ‖0)‖� , / ' 0% ‖0%‖� , and 0 ' . × ssss,  

where 0| , I ' 1, 2, is the tangent vector on the i-th coordinate-component curves at >. 

The span of the vectors ., and / is the tangent plane to the CS surface at point - ' ESurface(>). Similarly, the 

CS is termed the reference CS for the local tangent frame, and ., and / are the local tangent vectors at ~. 

In the case of an induced surface CS where ESurfaceF(3, 5)G ' R+�E3D�F(3, 5)G and point - ' E3DF(3S, 5S, 6S)G 

lies on the CS surface, the localized frame at - for G3D and the local tangent frame at - for GSurface coincide. In 

particular, . × / ' 0 ' 0+ ‖0+‖�  because of the coordinate-component ordering restriction specified in 5.3.5. 

The position-space vectors -, ., /, and 0 that specify a local tangent frame may serve as the parameters for the 
localization operators. With this choice of localization parameters, a localized CS will be aligned to the 
coordinate curves of the reference CS at the lococentric origin - point. The specification of a local tangent 
frame at a coordinate only requires the coordinate value. The frame axis directions are restricted to the 
coordinate curve tangent directions computed from the CS generating function. 
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EXAMPLE 2 For the surface geodetic CS, the local tangent plane at coordinate > ' (�S, �S),  �S � ��,  is the 

orthonormal frame with origin - ' ESurfGD(>) and basis vectors , ., /, and 0 where: 

. ' �� sin �Scos �S0 � , / = �− cos �S sin �S− sin �S sin �Scos �S
� ,  and  0 = . × / = �cos �S cos �Ssin �S cos �Ssin �S

� 
Localizing the Euclidean 3D CS with these vectors and localization operator l3D produces the Lococentric Euclidean 3D 

CS with CS origin at -, and CS axes aligned with vectors  ., /, and 0. (See Figure 5.14.) 

 
Figure 5.14 — Lococentric Euclidean CS on a local tangent plane 

EXAMPLE 3 Using the vectors -, ., /, and 0 from Example 2 as localization parameters to localize the Azimuthal 

Spherical CS with the localization operator l3D produces the Lococentric Azimuthal Spherical CS. (See Figure 5.15.) 
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Figure 5.15 — Lococentric azimuthal spherical CS on a local tangent plane 

The origin and basis vectors of an orthonormal frame can also be specified using the Cartesian vector space 
of a given local tangent frame at a coordinate. In some applications, this is a useful way of specification when 
the desired orthonormal frame is a rotation and/or a displacement of the given local tangent frame.  

EXAMPLE 4 A local tangent frame at geodetic 3D coordinate (�, �, 0) specifies frame vectors - = EF(�, �, 0)G, .,/, and 0. A new orthonormal frame is specified by frame origin -2 and basis vectors .�, /�, and 0�, where -2 = - + ℎ0 is the 

origin displaced by ℎ units in the 0 direction, and .� = �.  and  /� = �/ are the vectors ., and / rotated about the 0-axis 

through an angle 
 by rotation matrix � = �cos 
 − sin 
 0sin 
 cos 
 00 0 1� and 0̃ ' 0. 

5.3.6.4 Vectors, directions and localized frames 

Specification of vectors, including directions and vector quantities, requires an underlying vector space. In this 
standard, a vector is specified by a Cartesian coordinate in a designated localized frame (see 5.3.6.3) termed 
the vector reference frame. A direction is specified by a unit vector in a vector reference frame. A vector 
quantity is specified by a vector with a magnitude in a vector reference frame. This is addressed in greater 
detail in 8.4.5. 

EXAMPLE The local up direction at geodetic coordinate > ' (�S, �S),  �S � ��, is specified by the vector �0 0 1�� with respect to the vector reference frame at coordinate >. 

5.3.7 Map projection coordinate systems 

5.3.7.1 Map projections 

Map projections are 2D models of a 3D curved surface. In this International Standard, map projections are 
limited to the surface of an oblate ellipsoid (including the special case of a sphere). A map projection (MP) is 
comprised of 
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a) an MP domain in the surface of an oblate ellipsoid, 

b) a generating projection, and 

c) an MP range in 2D coordinate-space, 

where: 

a) the MP domain is a connected subset of the surface of the oblate ellipsoid, 

b) the MP range is a connected replete set, and 

c) the generating projection is one-to-one from the MP domain in the oblate ellipsoid onto its MP range 
and its inverse function is smooth in the MP range interior. 

NOTE 1 This definition may be generalized to any ellipsoid including tri-axial ellipsoids, but this International Standard 

only addresses map projections for oblate ellipsoids. 

NOTE 2 The domain of a map projection is always a proper subset of the oblate ellipsoid surface. In particular, the 

domain of the Mercator map projection (see Table 5.18) omits the pole points. 

The generating projection P is specified in terms of Surface Geodetic CS coordinates (see Table 5.24). The 
component functions �) and �% of the generating projection P shall be termed the mapping equations: 

���, �)  '  (3, 5) 

where: 3 ' �)(�, �) 5 ' �%(�, �). 
The MP range coordinate-components u and v shall be termed easting and northing, respectively. The positive 
direction of the u-axis (the easting axis) shall be termed map-east. The positive direction of the v-axis (the 
northing axis) shall be termed map-north. 

The inverse mapping equations are the component functions �) and �% of the inverse generating 

projection � = �t): 

� = �)�3, 5)  � ' �%(3, 5) 

5.3.7.2 Map projection as a surface CS 

If the inverse generating projection of a map projection QQQQ is composed with the Surface Geodetic CS 
generating function EGD, the resulting function EMP ' EGD ∘ � is the generating function of a surface CS (see 
Figure 5.16). The CS domain is the MP range. In this International Standard, a map projection CS shall be a 
surface CS for which the generating function is implicitly specified in terms of the mapping equations of a map 
projection. 

In some cases, the Surface Geodetic coordinates with coordinate-component � ' � � 2⁄  are not in the MP 

domain nor are they in the range of QQQQ. However, if the composite function EMP-1 = � ∘ EGD
-1  is continuous at the 

pole points �0,0, ��), then EMP and EMP
-1  shall be extended by continuity to include the pole points in the CS 

range. 

NOTE   The CS generating function EMP ' EGD ∘ � is not to be confused with the generating projection P. 
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Figure 5.16 — A map projection generating function 

5.3.7.3 Map projection geometry 

5.3.7.3.1 Introduction 

A map projection CS is a curvilinear15 CS of type surface. In general, lengths, angles, or areas in 2D 
coordinate-space have no direct corelation to the geometry of the surface formed by a surface CS in position-
space. In particular, the Euclidean distance between a pair of Surface Geodetic coordinates has no obvious 
meaning in position-space. In contrast, map projections are specifically designed so that coordinate-space 
geometry will model one or more geometric aspects of the corresponding oblate ellipsoid surface in position-
space.  

 

15 For some map projections (see Mercator and Equidistant Cylindrical), coordinate curves project to coordinate-space in 

a rectilinear grid of straight lines. In position-space these curves lie on the ellipsoid surface.   
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The map projection CSs specified in this International Standard are based on formulations so that one or more 
geometric aspects of the MP domain in the oblate ellipsoid surface are approximated or modelled by the 
corresponding aspect in coordinate-space. If distance is to be modelled, the length of the line segment 
between two map coordinates is related approximately or exactly to the length of the corresponding surface 
curve. Similarly, one or more of directions, areas, the angles between two intersecting curves, and shapes 
may be related approximately or exactly to the corresponding geometric aspect on the oblate ellipsoid surface. 

The extent to which these aspects are or are not closely related is an indication of distortion. Some map 
projection CSs are designed to eliminate distortion for one geometric aspect (such as angles or area). Others 
are designed to reduce distortion for several geometric aspects. In general, distortion tends to increase with 
the size of the oblate ellipsoid MP domain relative to the total oblate ellipsoid surface area. Conversely, 
distortion errors may be reduced by restricting the size of the MP domain. Map projections specified in this 
International Standard in the context of a spatial reference frame may have areas of definition beyond which 

the projection should not be used for some application domains due to unacceptable distortion16. 

5.3.7.3.2 Conformal map projections 

A conformal map projection preserves angles. For such map projections, when two surface curves on an 

oblate ellipsoid meet at the angle α, the image of those curves in the map coordinate-space meet at the same 

angle α [THOM]. 

In addition, [THOM] contains a derivation based on the theory of complex variables to obtain conditions that 
specify when a projection is conformal. The map projections specified in Table 5.18 through Table 5.22 are 
conformal. The Equidistant Cylindrical MP specified in Table 5.23 is not conformal. 

NOTE   The conformal property is local in that a conformal map projection preserves angles at a point but does not 

necessarily preserve shape or area. In particular, a large projected triangle may appear distorted under a conformal map 

projection. 

5.3.7.3.3 Point distortion 

One indicator of map projection length distortion is the ratio of lengths between an infinitesimal line segment in 
coordinate-space and the corresponding curve in position-space. Given a point in the interior of the MP range 

with Surface Geodetic coordinate (λ,ϕ) the directional point distortion17 at (λ,ϕ) with respect to a smooth 
surface curve passing through the point is the ratio of the differential distance in coordinate-space to the 

differential arc length at (λ,ϕ) along the curve as determined by the mapping equations.  

The latitudinal point distortion at (λ,ϕ), denoted j(λ,ϕ), is the directional point distortion with respect to the 

meridian at (λ,ϕ). It is computed in the direction of the meridian at the point as: 

�(�, �) ' lim
∆→0

∆(arc length in coordinate space)∆(arc length along a meridian)
' �(�3 ��⁄ )% 4 (�5 ��⁄ )%ℳ(�)  

where ℳ(�) is the radius of curvature in the meridian as specified in Table 5.6. 

The longitudinal point distortion at (λ,ϕ), denoted k(λ,ϕ), is the directional point distortion with respect to the 

parallel at (λ,ϕ). It is computed in the direction of the parallel at the point as: 

 

16 It is a consequence of the Theorema Egregium of Gauss that no map projection CS can eliminate all distortion. 

17 This concept is found in the literature under a variety of names.  The term “point distortion” is introduced to avoid 

ambiguity. 
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 �(�, �) ' lim
∆→0

∆(arc length in coordinate space)∆(arc length along a parallel)
' �(�3 ��⁄ )% 4 (�5 ��⁄ )%�(�)cos(�)  

where �(�) is the radius of curvature in the prime vertical as specified in Table 5.6. 

If a map projection is conformal, then the directional point distortion is independent of the direction of the 

curve at the point. In particular, j(λ,ϕ) ' k(λ,ϕ) for conformal map projections. 

It is common practice in cartography to convert map projection coordinate-space to a display coordinate-

space by means of a scaling factor. The scaling factor σ shall be termed a map scale [HTDP] and a point in 

the display space shall be termed a display coordinate18. The relationship of a display coordinate (ud, vd) to a 
map coordinate (u, v) is:  3d ' �3 5d ' �5 

Map scale is commonly expressed as a ratio 1:n. 

EXAMPLE   A map scale printed on a map sheet as 1:50 000 corresponds to σ ' 1/50 000. 

For a conformal map projection, the infinitesimal ratio of display distance to arc length along a parallel is the 

point scale at �λ,ϕ) and is denoted by kscaled. The relationship between point scale and point distortion is: kscaled(λ,ϕ) ' σ k(λ,ϕ). 
5.3.7.3.4 Geodetic azimuth and map azimuth 

The geodetic azimuth19 from a non-polar point p1 on the surface of an ellipsoid to a second point p2 on the 
surface is the curve azimuth (A.7.1.3) at p1 of the shortest geodesic curve segment (10.7) connecting p1 to p2 
(see Figure 5.17). The range of azimuth values � shall be 0 ≤ � < 2�. The definition and range constraints 
apply to points in both hemispheres. 

In a map projection CS, the map azimuth from a coordinate c1 to a coordinate c2 is defined as the angle from 
the v-axis (map-north) clockwise to the line segment connecting c1 to c2. In general, the map azimuth for a pair 
of coordinates will differ in value from the geodetic azimuth of the corresponding points on the oblate ellipsoid. 

 

18 The distinction between a map projection coordinate and a display coordinate is not usually made explicit in the 

literature. The term “display coordinate” is introduced to avoid ambiguity.  

19 More general definitions that allow measurements of azimuth angle clockwise or counterclockwise and from the north or 

south side of the meridian are in use. The generalization to the case for which one or more of the two points is not on the 

surface is treated in [RAPP1] and [RAPP2]. The more general definitions are not required for subsequent SRM concepts. 
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Figure 5.17 — Geodetic azimuths αααα12 from p1 to p2 and αααα34 from p3 to p4 

5.3.7.3.5 Convergence of the meridian 

Given a point �λ,ϕ) in the interior of the MP domain, the meridian through that point is projected to a curve in 
coordinate-space that passes through the corresponding coordinate. The angle γ at the coordinate in the 
clockwise direction from the curve to the v-axis (map-north) direction shall be termed the convergence of the 
meridian (COM).  

The relationship �(�, �) ' arctan2 \� �d�  , �g� ]  is used to derive the formulae for COM from the mapping 

equations of each of the map projections20. The COM angle is adjusted to the range �� � � ≤ �. 

NOTE  1 If the map projection is conformal, then an equivalent relationship is given by: �(�, �) ' arctan2 \�g�¡ , �d�¡]. 

 

20 The function arctan2 is defined in A.8.1. 
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A typical geometry illustrating the COM at a point p is shown for the transverse Mercator map projection in 
Figure 5.18. 

Figure 5.18 — Convergence of the meridian 

NOTE 2   If p2 is a map coordinate directly map-north of a map coordinate p1 (it has a larger v coordinate-component), 

then the map azimuth is zero, but the geodetic azimuth will not, in general, be zero. The geodetic azimuth is approximately 

the sum of the map azimuth and the COM if the two points are sufficiently close together. 

5.3.7.4 Relationship to projection functions 

5.3.7.4.1 Projection functions 

Projection functions are defined in A.9. In some cases, to realize a map projection CS, its generating 
projection is derived from a projection function. The derivation involves two steps. The first step is to restrict 
the domain of the projection function to a specified region of a given oblate ellipsoid so that the restricted 
function is one-to-one, ensuring that only a single point on the oblate ellipsoid maps to a given point in the 
projection. The range of a projection function is a surface in 3D position-space. The second step is to 
associate the surface in 3D position-space to a 2D coordinate-space without introducing additional distortions. 

In the case of planar projection functions, including the orthographic, perspective, and stereographic 
projection functions, the range is in a plane that can be identified with 2D coordinate-space by selecting an 
origin and unit axis points. 

In the case of the cylindrical and conic projection functions, the range surface is a cylinder or a cone, 
respectively. These surfaces are developable surfaces and, except for a line of discontinuity, are 
homoeomorphic to a subset of 2D coordinate-space with a homeomorphism that has a Jacobian determinant 
equal to one. Conceptually, these surfaces can be unwrapped to a flat plane without stretching the surface. 

The Polar Stereographic MP (Table 5.22) is derived from the stereographic projection function, and in the 
spherical case, it is a conformal map projection. The same derivation may be applied to an oblate ellipsoid. 
However, the resulting map projection will not have the conformal property. For this reason, the generalization 
of the Polar Stereographic map projection mapping equations from the spherical case to the non-spherical 
oblate ellipsoid case is not derived from the polar stereographic projection function. Instead, it is derived 
analytically to preserve the conformal property. Similarly, the Mercator map projection (Table 5.18) is designed 
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to have the conformal property and is not derived from the cylindrical projection function even in the case of a 
sphere. 

EXAMPLE   Polar Stereographic: Given a sphere with a polar point p, the tangent plane to the sphere at p and the 
opposite polar point v specify a stereographic planar projection function P (see A.9.2.3). The restriction of P to a 

subsurface of the sphere that excludes v, is the generating projection for the sphere case of a Polar Stereographic map 

projection. In Figure 5.19 the position s on the sphere is projected to point t on a plane. 

 

Figure 5.19 — Polar Stereographic map projection 

5.3.7.4.2 Map projection classification 

The use of projection functions to derive map projections with desirable properties is limited by their functional 
nature but does motivate some classifications of map projections derived by other means. These 
classifications include tangent and secant map projections as well as conic and cylindrical map projections 
[SNYD, p. 5]. 

5.3.7.4.3 Cylindrical map projections  

A map projection is classified as cylindrical if: 

a) all meridians of the oblate ellipsoid project to parallel straight lines that are equally spaced with 
respect to the longitude of the meridians, and 

b) all parallels of the oblate ellipsoid project to parallel straight lines that are perpendicular to the 
meridian images. 

As a consequence, the COM, ���, �) ' 0 for a map projection of class cylindrical. 

EXAMPLE   The Mercator map projection (Table 5.18) and the equidistant cylindrical map projection (Table 5.23) are 

both examples of the cylindrical classification. 

A cylindrical map projection is tangent if the longitudinal point distortion is equal to one along the equator. It is 
secant if the longitudinal point distortion is equal to one along two parallels equally spaced from the equator in 
latitude. In that case, the parallel with positive latitude shall be termed the standard parallel. Tangent and 
secant cylindrical map projections are illustrated in Figure 5.20. 
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Figure 5.20 — Tangent and secant cylindrical map projections 

5.3.7.4.4 Conic map projections  

A map projection is classified as conic if: 

a) all meridians of the oblate ellipsoid project to radial straight lines that are equally spaced in radial 
angle with respect to the longitude of the meridians, and 

b) all parallels of the oblate ellipsoid project to concentric arcs that are perpendicular to the meridian 
images. 

As a consequence, COM, γ depends only on λ for conic map projections because the projections of meridians are straight 

line segments with an angle depending only on the longitude. 

EXAMPLE   Lambert Conformal Conic (see Table 5.21) satisfies conditions a) and b) and thus is classified as a conic 

projection. 

A conic map projection is tangent if along one parallel the longitudinal point distortion is equal to one. It is 
secant if the longitudinal point distortion is equal to one along two parallels that are not symmetric about the 
equator. In that case, the two parallels shall be termed the standard parallels (see Figure 5.21). 
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Figure 5.21 — Tangent and secant conical map projections 

5.3.7.5 Map projection CS common parameters 

To avoid negative coordinate-component values or to reduce the magnitude of the values in a region of 
interest in the coordinate-space of a map projection, two mapping equation parameters shall be provided to 
control the position of the coordinate-space origin �0,0�. One, denoted as 3F, shall be termed the false easting 

and shall offset easting values. The second, denoted as 5F, shall be termed the false northing and shall offset 
northing values. 

A map projection CS specification may specify additional mapping equation parameters. The mapping 
equation parameters, including false easting and false northing, shall also be termed the CS parameters. 

The CS parameters longitude of origin, denoted by �origin, and latitude of origin, denoted by �origin, are 

historically associated with some map projection CSs. Typically, the position with map coordinate (3£, 5£) has 

geodetic longitude equal to �origin and/or geodetic latitude equal to �origin. 

If �origin is present as a CS parameter in a map projection CS specification, it is used as the longitudinal 

centring function parameter (see ΛC in Table 5.6). 

The CS parameter central scale, denoted by �S, when present, is intended to control the tangent/secant 
characteristics of the map projection CS and is therefore close to, but does not generally exceed, 1,0. In the 
case of a sphere, �S = 1 corresponds to a tangent projection, and �S � 1 corresponds to a secant projection. 
Typically, some point in the MP domain with geodetic longitude equal to �origin and/or geodetic latitude equal 

to �origin will have a longitudinal point distortion equal to �S.  

For some MP cases, if �S < 1, there will exist a parallel with longitudinal point distortion equal to 1 at each 
point on the parallel. The latitude of such a parallel is termed a secant latitude, or a latitude of true scale. 

NOTE   Central scale should not be confused with Map scale. Map scales (see 5.3.7.3.3) are typically much smaller in 

magnitude and are applied directly to the coordinate-space. In particular, if a transverse Mercator map projection with 
central scale value k0 ' 0,9996 is to be scaled 1:50 000 on a map sheet display, then the mapping equations �)(�, �),  and �%(�, �) are evaluated with k0 = 0,9996 and the display coordinates (��)(�, �),  ��%(�, �)),  are plotted on the 

map sheet with σ = (1/50 000). 
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5.3.7.6 Augmented map projections 

5.3.7.6.1 Augmentation with ellipsoidal height 

A 3D CS can be specified from a map projection CS. The canonical embedding of a point (u, v) in ℝ% to the 

point (u, v, 0) in the uv-plane of ℝ+ allows map points in 2D coordinate-space to be augmented with a third 

coordinate axis, the w-axis of ℝ+. To be considered as a 3D CS, an augmented 3-tuple (u, v, w) of coordinates 
in the augmented map projection coordinate-space shall be associated to a unique position in position-space. 
The association is to ellipsoidal height ℎ =  6. Given an augmented coordinate-tuple (u, v, w) for which (u, v) 
belongs to the coordinate range of the underlying generating projection, the associated position is given in 

Geodetic 3D coordinates (λ, ϕ, h) where (λ, ϕ) is projected to (u, v) by the map projection mapping equations. 
The third coordinate-space coordinate w is the vertical coordinate and the Geodetic 3D coordinate constraints 
on negative values of h impose corresponding constraints on allowed values for w. In some application 
domains, other vertical coordinate measures are used (see Clause 9). Augmentation is restricted to ellipsoidal 
height in this International Standard. 

5.3.7.6.2 Distortion in augmented map projections 

In addition to map projection distortion (see 5.3.7.3.3), augmentation causes additional distortion. Consider 
the two straight-line segments between the pairs of coordinate-space points {(u1, v1, 0), (u2, v2, 0)} and {(u1, v1, w), (u2, v2, w)K with w > 0 (see Figure 5.22). In augmented map projection geometry, the two line segments 
have the same length in coordinate-space. The corresponding curve in position-space of the first line segment 
is a surface curve of the oblate ellipsoid (or sphere). The corresponding second curve is outside of the oblate 
ellipsoid (or sphere) and has longer arc length than the first, and the length difference increases with w. 

In general, vertical angles are not preserved and the angular error will vary with the point distortion value. 
These and other distortions have profound implications for dynamic equations that are beyond the scope of 
this International Standard 

.  

Figure 5.22 — Vertical distortion 
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5.3.8 CS specifications 

5.3.8.1 Specification table elements and common functions and parameters 

The CSs specified in this International Standard are presented in Table 5.8 through Table 5.37. Each CS 
specification specifies the values of all elements presented in Table 5.5. 

Table 5.5 — Coordinate system specification elements 

Element Definition 

Description A description of the CS including a common name, if any. 

CS label The label of the CS (see 13.2.2). 

CS code The code of the CS (see 13.2.3).  Code 0 (UNSPECIFIED) is reserved. 

Function type Either “generating function” or “map projection”. 

CS descriptor 
One of: 3D linear, 3D curvilinear, surface linear, surface curvilinear, map 
projection, 2D linear, 2D curvilinear, 1D linear, 1D curvilinear, or surface (map 
projection) and 3D (augmented map projection). 

Properties 
Either “none” or a list of one or more properties of the CS chosen from the 
following: orthogonal, Cartesian, and in the case of an MP, conformal, or not 
conformal. 

CS parameters and 
constraints 

The CS parameters (if any) along with any constraints on how those parameters 
interrelate, otherwise “none”. 

Coordinate-components Coordinate-component symbols and common names in a specified order. 

CS Domain 

-- or -- 

MP Domain 

For Function type generating function: CS Domain 

For Function type map projection:  MP Domain 

Generating function 

-- or -- 

 Mapping equations 

For Function type generating function: Generating function 

For Function type map projection:  Mapping equations 

Domain of the inverse 
The domain of the inverse of the CS generating function or the domain of the 
inverse of the generating projection. 

Inverse  
The inverse of the CS generating function or the inverse of the generating 
projection. 

COM For map projection CSs, the equation for γ in radians. Otherwise "n/a". 

Point distortion 
For map projection CSs, the equation for k, if conformal, or 
the equations for k and j, if non-conformal. Otherwise "n/a". 

Figures Zero or more figure(s) that explain and illustrate the CS.  

Notes Optional, non-normative information concerning the CS, otherwise "none". 

References The references (see 13.2.5). 

A specific ordering of coordinate-components for a coordinate n-tuple in a CS specification is required in this 
International Standard for clarity of presentation, to avoid ambiguity in the specification of the API, and, in the 
case of an orthogonal 3D CS, to ensure the right-handed CS property (see 5.3.5.4). Coordinate values may 
be represented using any of the methods delineated in 8.5.1. 
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Several specified CS generating functions and mapping equations and/or their inverses use some common 
intermediate functions or parameters associated with oblate ellipsoids. For clarity and concise presentation, 
these functions and parameters are defined in Table 5.6. 

Table 5.6 — Common parameters and functions of an oblate ellipsoid 

Function or parameter Symbol and defining expression 

major semi-axis § 

minor semi-axis � 

flattening ¨ = 1 � �§ 

(first) eccentricity 
©% ' 1 � ª�§«%

 

alternative equivalent expression: ©% ' 2¨ − ¨% 

second eccentricity F© ′G% = ©%
�1 − ©%� 

radius of curvature in the prime vertical ���� = a

�1 − ©% sin% � 

radius of curvature in the meridian 

ℳ��� = a�1 − ©2�
\�1 − ©2 sin2 � ]3 

' (1 � ©%)
a% F�(�)G+

 

meridional distance to equator ¬(�)  = ­ ℳ 
S (®) b 

longitudinal centring about �C ΛC(�, �C ) ' ¯ � � �C               if � � � � � �C ≤ �� � �C � 2�    if      � � � � �C� � �C 4 2�    if               � � �C ≤ �� 

NOTE 1 Replacing �° with ��° gives the inverse of the longitudinal centring function. That is:  

if Λ∗ = ²°(�, �°), then � = Λ°(²∗, −�°). 
NOTE 2 The function arctan2, used in many CS specification tables, is defined in A.8.1. 

Table 5.7 presents a directory of the CS specifications in this International Standard. Each listed CS is 
specified in a separate table that is indicated by the hyperlink in the corresponding cell in the “Table number” 
column.  Additional CSs may be specified by registration in accordance with Clause 13. 

Table 5.7 — CS specification directory 

Function  
type 

CS type Label and description 
Table  

number 
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Function  
type 

CS type Label and description 
Table  

number 

Generating 
function 

3D 

EUCLIDEAN_3D 
Euclidean 3D 

Table 5.8 

LOCOCENTRIC_EUCLIDEAN_3D  
Lococentric Euclidean 3D 

Table 5.9 

EQUATORIAL_SPHERICAL  
Equatorial Spherical 

Table 5.10 

LOCOCENTRIC_EQUATORIAL_SPHERICAL  
Lococentric Equatorial Spherical 

Table 5.11 

AZIMUTHAL_SPHERICAL  
Azimuthal Spherical 

Table 5.12 

LOCOCENTRIC_AZIMUTHAL_SPHERICAL  
Lococentric Azimuthal Spherical 

Table 5.13 

AZIMUTHAL_CYLINDRICAL 
Azimuthal Cylindrical 

Table 5.36 

LOCOCENTRIC_AZIMUTHAL_CYLINDRICAL 
Localized Azimuthal Cylindrical 

Table 5.37 

GEODETIC  
Geodetic 3D 

Table 5.14 

PLANETODETIC  
Planetodetic 3D 

Table 5.15 

CYLINDRICAL  
Cylindrical 

Table 5.16 

LOCOCENTRIC_CYLINDRICAL  
Lococentric Cylindrical 

Table 5.17 

Map projection 
Surface and 
augmented 3D 

MERCATOR  
Mercator 

Table 5.18 

OBLIQUE_MERCATOR_SPHERICAL  
Oblique Mercator Spherical 

Table 5.19 

TRANSVERSE_MERCATOR  
Transverse Mercator 

Table 5.20 

LAMBERT_CONFORMAL_CONIC  
Lambert Conformal Conic 

Table 5.21 

POLAR_STEREOGRAPHIC  
Polar Stereographic 

Table 5.22 

EQUIDISTANT_CYLINDRICAL  
Equidistant Cylindrical 

Table 5.23 

Generating 
function 

Surface 

SURFACE_GEODETIC  
Surface Geodetic 

Table 5.24 

SURFACE_PLANETODETIC  
Surface Planetodetic 

Table 5.25 

LOCOCENTRIC_SURFACE_EUCLIDEAN  
Lococentric Surface Euclidean 

Table 5.26 
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Function  
type 

CS type Label and description 
Table  

number 

LOCOCENTRIC_SURFACE_AZIMUTHAL  
Lococentric Surface Azimuthal 

Table 5.27 

LOCOCENTRIC_SURFACE_POLAR  
Lococentric Surface Polar 

Table 5.28 

2D 

EUCLIDEAN_2D  
Euclidean 2D 

Table 5.29 

LOCOCENTRIC_EUCLIDEAN_2D  
Lococentric Euclidean 2D 

Table 5.30 

AZIMUTHAL  
Azimuthal 

Table 5.31 

LOCOCENTRIC_AZIMUTHAL  
Lococentric Azimuthal 

Table 5.32 

POLAR  
Polar 

Table 5.33 

LOCOCENTRIC_POLAR  
Lococentric Polar 

Table 5.34 

1D 
EUCLIDEAN_1D  
Euclidean 1D 

Table 5.35 

5.3.8.2 Euclidean 3D CS specification 

Table 5.8 — Euclidean 3D CS 

Element Specification 

Description Euclidean 3D 

CS label EUCLIDEAN_3D 

CS code 1 

Function type Generating function 

CS descriptor 3D linear 

Properties Cartesian 

CS parameters and 
constraints 

none 

Coordinate-
components 

u, v, w 

CS Domain ℝ+ 

Generating function E´+mF(3, 5, 6)G = #356$ 
Domain of the inverse ℝ+ 

Inverse E´+mt7 µ#356$¶ = (3,  5,  6) 

COM n/a 
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Element Specification 

Point distortion n/a 

Figures 

 

Notes Coordinate-space 3-tuples are identified with position-space 3-tuples. 

References [EDM] 

5.3.8.3 Lococentric Euclidean 3D CS specification 

Table 5.9 — Lococentric Euclidean 3D CS 

Element Specification 

Description Localization of the Euclidean 3D CS 

CS label LOCOCENTRIC_EUCLIDEAN_3D 

CS code 2 

Function type Generating function 

CS descriptor 3D linear 

Properties Cartesian 

CS parameters and 
constraints 

Localization parameters: 

 q: the lococentric origin in ℝ+, and 

 r, s: axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

u, v, w 
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Element Specification 

CS Domain ℝ+ 

Generating function 

ELE3DF(3, 5, 6)G = l3D ∘ EE3DF(3, 5, 6)G = ��, �, "��
 where:  � = 1 • (),   � = 1 • (%,    " = 1 • (+,1 =  - + 3 . + 5 / + 6 . × /,l3D =  the 3D localization operator, and EE3D =  the Euclidean 3D CS generating function

  

Domain of the inverse ℝ+ 

Inverse 

Et7(��, �, "��� = EE3D
t) ∘  l3D

t) ���, �, "��� ' �3, 5, 6� where:  3 ' 1 • .,   5 ' 1 • /,   6 ' 1 • �. n /�,1 '  �� () 4 � (% 4 " (+� � -,l3D
t) '  the inverse 3D localization operator, andEE3D

t) '  the Euclidean 3D CS inverse generating function

  

COM n/a 

Point distortion n/a 

Figures 

 

Notes 

1) Euclidean 3D CS (see Table 5.8) is a special case with - ' �0,0,0�,  . ' �1,0,0�,  / ' �0,1,0�. 
2) The generating function is the composition of the generating function for 

Euclidean 3D CS (see Table 5.8) with the 3D localization operator (see 
5.3.6.2). 

References [EDM] 



 ISO/IEC 18026:2023(E)  

 

© ISO/IEC 2023 – All rights reserved 67

 

5.3.8.4 Equatorial Spherical CS specification 

Table 5.10 — Equatorial Spherical CS 

Element Specification 

Description Equatorial Spherical 

CS label EQUATORIAL_SPHERICAL 

CS code 3 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

none 

Coordinate-
components 

λ: longitude in radians, 

θ: spherical latitude in radians, and  

ρ: radius. 

CS Domain 
T��, 
, �� in ℝ+  U �� < � ≤ �  and  � �2 < 
 < �2  and 0 < �W 
∪   T�0, 
, �� in ℝ+  U 
 ' ± �2  and 0 < �W   ∪   H�0,0,0�K 

Generating function EESF��, 
, ��G ' ·� cos�
� cos���� cos�
� sin���� sin�
� ¸ 

Domain of the inverse ℝ+ 

Inverse 

EES
t)���, �, "��� ' ��, 
, ��,

where:   � '  arctan2��, ��,

 ' ¹arcsinF" �� G principal value, if � > 00                    if � ' 0

and:  � ' ��% 4 �% 4 z%.
 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The Equatorial Spherical CS is not intrinsically associated with any specific 
sphere. 

2) In many application domains, the co-latitude » ' ¼% � 
 is used. The spherical 

latitude 
 has been specified for compatibility with astronomical declination. 

The modifier "equatorial" is used to emphasize this difference. 

3) The inverse generating function is discontinuous on the z-axis. 

References [HCP] 

5.3.8.5 Lococentric Equatorial Spherical CS specification 

Table 5.11 — Lococentric Equatorial Spherical CS 

Element Specification 

Description Localization of the Equatorial Spherical CS. 

CS label LOCOCENTRIC_EQUATORIAL_SPHERICAL 

CS code 4 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 
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Element Specification 

CS parameters and 
constraints 

Localization parameters: 

 q: the lococentric origin in ℝ+, and 

 r, s: axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

λ: longitude in radians, 

θ: spherical latitude in radians, and 

ρ: radius. 

CS Domain 
T��, 
, �) in ℝ+  U �� � � ≤ �  and  � �2 < 
 < �2  and 0 < �W  ∪   T(0, 
, �) in ℝ+  U 
 ' � �2  and 0 < �W   ∪   H(0,0,0�K 

Generating function 

EF��, 
, �)G ' l3D ∘ EESF(�, 
, �)G 
= ��, �, "�� where:  � ' 1 • (),   � ' 1 • (%,    " ' 1 • (+,1 '  - 4 �(cos(
) ( cos(�) . 4 sin(�) /) 4 sin(
) . × /),l3D '  the 3D localization operator, and EES '  the Equatorial Spherical CS generating function

 

Domain of the inverse ℝ+ 

Inverse 

Et7���, �, "��) ' EES
t) ∘  l3D

t) (��, �, "��) ' (�, 
, �),
where:   � '  arctan2(5, 3),
 ' ¹arcsinF6 �� G principal value, I¨ � > 0

0                     I¨ � ' 0  � ' �3% 4 5% 4 6%,   3 ' 1 • .,   5 ' 1 • /,   6 ' 1 • (. × /),1 '  (� () 4 � (% 4 " (+) � -,l3D
t) '  the inverse 3D localization operator, and EES
t) '  the Equatorial Spherical CS inverse generating function

 

COM n/a 

Point distortion n/a 



ISO/IEC 18026:2023(E) 

 

70 © ISO/IEC 2023 – All rights reserved

 

Element Specification 

Figures 

 

Notes 
The generating function is the composition of the generating function for Equatorial 
Spherical CS (see Table 5.10) with the 3D localization operator (see 5.3.6.2). 

References [EDM] 

5.3.8.6 Azimuthal Spherical CS specification 

Table 5.12 — Azimuthal Spherical CS 

Element Specification 

Description Azimuthal Spherical 

CS label AZIMUTHAL_SPHERICAL 

CS code 5 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

none 

Coordinate-
components 

α: azimuth in radians, 

ρ: radius, and 

θ: depression/elevation angle in radians. 

CS Domain 
T(�, �, 
) in ℝ+  U 0 ≤ � < 2� and 0 < � and � �2 < 
 < �2W ∪   T(0, �, 
) in ℝ+  U 0 < �  and 
 ' � �2 W   ∪   H(0,0,0�K 
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Element Specification 

Generating function EASF��, �, 
)G ' · � cos(
) sin(�)� cos(
) cos(�)� sin(
) ¸ 

Domain of the inverse ℝ+ 

Inverse 

EAS
t)���, �, "��) ' (�, �, 
),

where: � ' ½ arctan2(�, �)          if � ¾ 0
2� +  arctan2(�, �) if � � 0

� = ��% + �% + "%,
and  
 ' ¹arcsinF" �� G principal value, if  � > 0

0                    if  � ' 0.
 

COM n/a 

Point distortion n/a 

Figures 

 

Notes 

1) The inverse generating function is discontinuous on the z-axis. 

2) The commonly used coordinate-component orderings are either (ρ,α,θ) or (α,θ,ρ). The coordinate-component ordering has been specified as (α,ρ,θ) to 
ensure that this CS is right-handed. Compliant coordinate value representations 
are delineated in 8.5.1. 

References [EDM] 

5.3.8.7 Lococentric Azimuthal Spherical CS specification 

Table 5.13 — Lococentric Azimuthal Spherical CS 

Element Specification 
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Element Specification 

Description Localization of the Azimuthal Spherical CS 

CS label LOCOCENTRIC_AZIMUTHAL_SPHERICAL 

CS code 6 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

Localization parameters: 

 q: the lococentric origin in ℝ+, and 

 r, s: axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

α: azimuth in radians, 

ρ: radius, and 

θ: depression/elevation angle in radians. 

CS Domain 
T��, �, 
) in ℝ+  U 0 ≤ � < 2�  and 0 < � and � �2 < 
 < �2W ∪   T(0, �, 
) in ℝ+  U 0 < �  and 
 ' � �2 W   ∪   H(0,0,0�K 

Generating function 

EF��, �, 
)G ' l3D ∘ EASF(�, �, 
)G 
= ��, �, "�� where:  � ' 1 • (),   � ' 1 • (%,    " ' 1 • (+,1 '  - 4 �(cos(
) ( sin(�) . 4 cos(�) /) 4 sin(
) . × /),l3D '  the 3D localization operator, and EAS '  the Azimuthal Spherical CS generating function

 

Domain of the inverse ℝ+ 

Inverse 

Et7���, �, "��) ' EAS
t) ∘  l3D

t) (��, �, "��) ' (�, �, 
),
where: � ' ½arctan2(3, 5)          if 3 ¾ 02� + arctan2�3, 5) if 3 � 0


 = ¹arcsinF6 �� G principal value, if � > 0
0,  if � ' 0  � ' �3% 4 5% 4 6%   3 ' 1 • .,    5 ' 1 • /,    6 ' 1 • (. × /),1 '  (� () 4 � (% 4 " (+) � -,l3D

t) '  the inverse 3D localization operator, and EAS
t) '  the Azimuthal Spherical CS inverse generating function

 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The generating function is the composition of the generating function for 
Azimuthal Spherical CS (see Table 5.12) with the 3D localization operator (see 
5.3.6.2). 

2) The commonly used coordinate-component orderings are either (ρ,α,θ) or (α,θ,ρ). The coordinate-component ordering has been specified as (α,ρ,θ) to 
ensure that this CS is right-handed. Compliant coordinate value 
representations are delineated in 8.5.1. 

3) The inverse generating function is discontinuous on the z-axis. 

References [EDM] 

5.3.8.8 Geodetic 3D CS specification 

Table 5.14 — Geodetic 3D CS 

Element Specification 

Description Geodetic 3D 

CS label GEODETIC 

CS code 7 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 
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Element Specification 

CS parameters and 
constraints 

a: major semi-axis length 
b: minor semi-axis length 

Constraints: 
 a > b: (oblate ellipsoid) 

 a ' b: (sphere) 

Coordinate-
components 

λ: longitude in radians, 

ϕ: geodetic latitude in radians, and 
h: ellipsoidal height. 

CS Domain 

T(�, �, ℎ) in ℝ+ U �� � � ≤ �  and  |�| � �2  and � � � ℎ W∪   T(0, �, ℎ) in ℝ+U � ' � �2 , �� � ℎ W                                     

Generating function 

EF(�, �, ℎ)G ' · (�(�) 4 ℎ) cos(�) cos(�)(�(�) 4 ℎ) cos(�) sin(�)F(1 � ©%)�(�) 4 ℎG sin(�)¸ 

Simplification if a =  b :    
EF(�, �, ℎ)G ' ·(§ 4 ℎ) cos(�) cos(�)(§ 4 ℎ) cos(�) sin(�)(§ 4 ℎ) sin(�) ¸ 

Domain of the inverse Á��, �, "� in ℝ+Â (§ � �) � ��% 4 �% 4 "%Ã ∪ H�0,0, "� | " I� ℝK  
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Inverse 

If x=y=0,   

Et7(��, �, "��) ' Ä \0, 4 �2 , 4" � �]   " ¾ 0 
 \0, � �2 , �" � �]   " � 0  

else  Et7(��, �, "��) ' (�, �, ℎ)               where:    � ' arctan2(�, �) � ' arctan2F6, " 4 ©Å%zSG ℎ ' 3 µ1 � �%§5¶ 
6 ' ��% 4 �% zS ' �%"§5  3 ' �(6 � ©%wS)% 4 "% 5 ' �(6 � ©%wS)% 4 (1 � ©%)"% 
wS ' �Æ©%61 4 Ç 4 È§%2 ª1 4 1Ç« � Æ(1 � ©%)"%Ç(1 4 Ç) � Æ 6%2  
Ç ' �1 4 2©ÉÆ Æ ' Ê3(Ë 4 1 Ë⁄ 4 1)%v% 
Ë ' Ì1 4 b 4 �b(b 4 2�Í  
b ' ©ÉÊ6%v+  v ' 6% 4 (1 � ©%)"% � ©%(§% � �%) Ê ' 54�%"% 

Simplification if § ' �: � ' arcsin(" (ℎ 4 §)⁄ )       principal value ℎ ' ��% 4 �% 4 "% � § 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The Surface Geodetic CS (Table 5.24) is the 3rd induced surface CS for this 
CS at any coordinate for which h ' 0 (see 5.3.4.2). 

2) If a ' b, the geodetic latitude ϕ  coincides with the spherical latitude θ (see 
Table 5.10). 

3) The inverse generating function is not continuous on the oblate ellipsoid 
rotational axis. 

4) There are various iterative methods to evaluate the inverse generating 
function such as: � ' atan2��, �� � ' lim|→Ð ��|� 

ℎ ' Ñ cos � 4 " sin � � §�1 � ©% sin% �   

where:    ��0� ' atan \Ñ, "1 � ©2] �(|Ò)) ' atanFÑ, " 4 ©% sin ��|��F��|�GG          Ñ ' ��% 4 �% 

References [HEIK] 

5.3.8.9 Planetodetic 3D specification 

Table 5.15 — Planetodetic CS 

Element Specification 

Description Planetodetic 3D. Geodetic 3D with longitude in opposite direction 

CS label PLANETODETIC 
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Element Specification 

CS code 8 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

a: major semi-axis length 
b: minor semi-axis length 

Constraints: 
 a > b: (oblate ellipsoid) 

 a ' b: (sphere) 

Coordinate-
components 

ϕ: geodetic latitude in radians,  

λ: planetodetic longitude in radians, and 
h: ellipsoidal height. 

CS Domain 

T��, �, ℎ)  in ℝ+U �� � � ≤ � and |�| � �2   and � � � ℎ W∪   T(0, � ℎ) in ℝ+U � ' � �2 , �� � ℎ W                                       

Generating function 

E(�, �, ℎ) ' EGD(��, �, ℎ), 
where EGD is the Geodetic 3D CS generating function. 

Domain of the inverse  Á��, �, "� in ℝ+Â (§ � �) � ��% 4 �% 4 "%Ã ∪ H�0,0, "� | " I� ℝK 

Inverse 

Et7���, �, "��) ' EGD
t) (��, ��, "��) ' (�, �, ℎ)  

where EGD
t)  is the Geodetic 3D CS inverse generating function. 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) Similar to the Geodetic 3D CS (see Table 5.14) except that longitude 
increases in the opposite direction. In particular, points on a planet surface 
rotating (prograde) into view have larger planetodetic longitudes than those 
points rotating out of view. This CS is also termed planetocentric when a ' b 

and planetographic when a > b. 

2) The inverse generating function is not continuous on the oblate ellipsoid 
rotational axis. 

3) The coordinate-component ordering differs from that of Geodetic 3D CS to 
satisfy the right handedness requirement.  

References [RIIC06] 

5.3.8.10 Cylindrical CS specification 

Table 5.16 — Cylindrical CS 

Element Specification 

Description Cylindrical 

CS label CYLINDRICAL 

CS code 9 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

none 
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Element Specification 

Coordinate-
components 

ρ: radius,  

θ: cylindrical angle in radians, and 
h: height. 

CS Domain H(�, 
, ℎ) in ℝ+| 0 < �  and  0 ≤ 
 < 2�K    ∪   H�0, 0, ℎ) | ℎ in ℝK 
Generating function ECF��, 
, ℎ)G ' �� cos(
)� sin(
)ℎ � 

Domain of the inverse ℝ+ 

Inverse 

EC
t)���, �, "��) ' (�, 
, ℎ), 

where: � ' ��% 4 �%, 

 ' ½arctan2(�, �)        if  � ¾ 0

2� + arctan2��, �)  if  � � 0,   and ℎ ' ". 
COM n/a 

Point distortion n/a 

Figures 

 

Notes 
The inverse generating function is discontinuous on the half plane H��, 0, "�� |  0 ≤ �K 

References [EDM] 
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5.3.8.11 Lococentric Cylindrical CS specification 

Table 5.17 — Lococentric Cylindrical CS 

Element Specification 

Description Localization of the Cylindrical CS 

CS label LOCOCENTRIC_CYLINDRICAL 

CS code 10 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

Localization parameters: 

 q: the lococentric origin in ℝ+, and 

 r, s: axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

ρ: radius,  

θ: cylindrical angle in radians, and 
h: height. 

CS Domain H��, 
, ℎ) in ℝ+| 0 < �  and  0 ≤ 
 < 2�K  ∪   H�0,0, ℎ) | ℎ in ℝK 

Generating function 

EF��, 
, ℎ)G ' l3D ∘ ECF(�, 
, ℎ)G 
= ��, �, "�� where:  � ' 1 • (),   � ' 1 • (%,    " ' 1 • (+,1 '  - 4 � cos(
) . 4 � sin(
) / 4 ℎ. × /,l3D '  the 3D localization operator, and EC '  the Cylindrical CS generating function

 

Domain of the inverse ℝ+ 

Inverse 

Et)���, �, "��) ' EC
t) ∘  l3D

t) (��, �, "��) ' (�, 
, ℎ),
where: � ' �3% 4 5% ,   
 ' ½arctan2(5, 3)        if  5 ¾ 02� + arctan2�5, 3)  if  5 � 0, ℎ ' 6 3 ' 1 • .,   5 ' 1 • /,   6 ' 1 • (. × /),1 '  (� () 4 � (% 4 " (+) � -,l3D

t) '  the 3D localization inverse operator, and EC
t) '  the Cylindrical CS inverse generating function

 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The generating function is the composition of the Cylindrical generating 
function (see Table 5.16) with the 3D localization operator (see 5.3.6.2). 

2) The inverse generating function is discontinuous on the half plane  H ��, �, "��  |   (��, �, "�� � -) • . ¾ 0,   (��, �, "�� � -) • / ' 0K 
References [EDM] 

5.3.8.12 Mercator CS specification 

Table 5.18 — Mercator CS 

Element Specification 

Description Mercator and augmented Mercator map projection coordinate systems 

CS label MERCATOR 

CS code 11 

Function type Mapping equations 

CS descriptor Surface (map projection) and 3D (augmented map projection) 

Properties Orthogonal, conformal 

CS parameters and 
constraints 

§:  oblate ellipsoid major semi-axis (§ > 0� ©:  oblate ellipsoid eccentricity (0 ≤ © < 1� �origin:  longitude of origin in radians F−� < �origin ≤ �G 

�S: central scale �0 < �S ≤ 1� 

3Ô: false easting 

5Ô: false northing 
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Element Specification 

Coordinate-
components 

u: easting, and 
v: northing. 

Augmented coordinate: 
h: ellipsoidal height 

MP Domain T��, �) in ℝ%U �� � � � �origin ≤ �  and � �2 <  � � �2W 

Mapping equations 

3 ' �)��, �) ' 3£4§�S�∗, and 

5 ' �%(�, �) ' 5£ 4 §�S ln Õtan \�4 4 �2] µ1 � © sin(�)1 4 © sin(�)¶Ö%× , 
where: Λ∗ ' ΛØF�, ��originG. 

Domain of the inverse H�3, 5� in ℝ%|−�§�S < 3 − 3F ≤ �§�SK 

Inverse 

� = �)�3, 5) ' Λ°FΛ∗,  ��originG, 
where: Λ∗ ' 3 � 3£§�S  

For ϕ, functional iteration is used for the representation of the inverse mapping 
equation [SNYD]. Superscripts involving i indicate elements in the iteration 
sequence. � ' �%(3, 5) ' ÙI�|→∞

�%| �3, 5), 
�%)(3, 5) '  �2 � 2 arctan Úexp ª�5 4 5£§�S «Ü , and 

�%|Ò)(3, 5) '  ¼% � 2 arctan Õexp \tgÒgÝÞßf ] µ)tÖ àáâ\ãäå �d,g)])ÒÖ àáâ\ãäå (d,g)]¶æä×, for i = 1, 2, 3, … 

COM ���, �� = 0 

Point distortion ���, �� = §�S����cos��� 
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Element Specification 

Figures 

 

Example Mercator map projection 

Notes 

1) Meridians project as straight lines that satisfy equations of the form u = 
some constant. Equally-spaced meridians project to equally-spaced straight 
lines orthogonal to the u-axis. Parallels project to straight lines orthogonal to 
the projected meridians and satisfy equations of the form v = some constant. 
Evenly-spaced parallels project to unevenly-spaced parallel lines on the 
projection. The spacing of these lines increases with distance from the u-axis. 

2) The meridian at �origin corresponds to the line 3 = 3£. 
3) The point distortion equals �S along the Equator. 

4) An alternate CS parameter set is given by: §, ©, �origin, 3F, 3F, and �):  the secant latitude in radians �− � 2⁄ < �) < � 2⁄ �. 

This reduces to the specified CS parameter set by assigning: �S = )Þ  ���)� cos��)�. 

With this value for �S, ���, �� =1. 

References [SNYD] 

5.3.8.13 Oblique Mercator Spherical CS specification 

Table 5.19 — Oblique Mercator Spherical CS 

Element Specification 

Description Oblique Mercator and Augmented Oblique Mercator map projections of a sphere 

CS label OBLIQUE_MERCATOR_SPHERICAL 

CS code 12 

Function type Mapping equations 

CS descriptor Surface (map projection) and 3D (augmented map projection) 
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Element Specification 

Properties Orthogonal, conformal 

CS parameters and 
constraints 

é: radius of the sphere  �0 < é� �S: central scale �0 < �S ≤ 1� ��), �)�: first point specifying the central line ��%, �%�: second point specifying the central line 3Ô: false easting 5Ô: false northing 

Constraints:  − �2 < �) ≤ �2 ,  − �2 < �% ≤ �2 ,  |�)| + |�%| > 0,  and −� < �) ≤ �,  −� < �% ≤ �,  �) ≠ �%,    |�) − �%| ≠ �. 
Coordinate-
components 

u: easting, and 
v: northing. 

Augmented coordinate: 
h: ellipsoidal height 

MP Domain 

T��, �) in ℝ%U −� < � − �origin ≤ �  and − �2 ≤  � ≤ �2W 
except for the transformed pole points determined by the values �origin and �S. 

These values are computed in the forward mapping equations. 

If �S > 0, the transformed poles are:  FΛCF− � 2⁄ , −�originG, � 2⁄ − �SG  northern hemisphere transformed pole, and  FΛCF� 2⁄ , −�originG, − � 2⁄ + �SG  southern hemisphere transfromed pole. 

If �S < 0, the transformed poles are:  FΛCF� 2⁄ , −�originG, � 2⁄ + �SG northern hemisphere transformed pole, and  FΛCF− � 2⁄ , −�originG, − � 2⁄ − �SG southern hemisphere transformed pole. 

Mapping equations 

3 = �)��, �� = 3F + é�Sarctan2FÆ)��, ��, cos��� cosF� − �originGG, 
5 = �%��, �� = 5F + 12 é�S ln µ1 − Æ%��, ��1 + Æ%��, ��¶ , 
where: Æ)��, �� = sin��S� sin��� + cos��S� cos��� sinF� − �originG , 
Æ%��, �� = − cos��S� sin��� + sin��S� cos��� sinF� − �originG , 
�S =

⎩⎪⎨
⎪⎧ arctan µ sin��)�

cos��)� sinF�) − �originG¶ ifÂsinF�) − �originGÂ ≥ ÂsinF�% − �originGÂ
arctan µ sin��%�

cos��%� sinF�% − �originG¶  ifÂsinF�) � �originGÂ < ÂsinF�% � �originGÂ , 
�S is the principal value of the arctangent, �origin ' arctan2(ÆS, ÇS), ÆS ' cos(�)) sin(�%) sin(�)) � sin(�)) cos(�%) cos(�%) , and ÇS ' cos(�)) sin(�%) cos(�)) � sin(�)) cos(�%) cos(�%). 
Note:  reversing the points ��), �)) and (�%, �%) will result in the antipodal �origin. 

Domain of the inverse H�3, 5� in ℝ%|−�§�S < 3 − 3F < �§�SK 
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Inverse 

� = �)�3, 5� = ΛØF²∗,  −�originG 

� = �%�3, 5� = arcsin µÇ%�3∗, 5∗�cosh�5∗� ¶   �principal value� 

where: 

Λ∗ = arctan2FÇ)�3∗, 5∗�, cos�3∗�G Ç)�3∗, 5∗� = cos��S� sin�3∗� − sin��S� sinh�5∗� , Ç%�3∗, 5∗� = sin��S� sin�3∗� + cos��S� sinh�5∗� , 
3∗ = 3 − 3Ôé�S , and 

5∗ = 5 − 5Ôé�S . 
COM 

���, �� = arctan2F− sin��S� cosF� − �originG , cos��S� cos���+ sin��S� sin��� sinF� − �originGG 

Point distortion 
���, �� = �S

Ì1 − \cos��S� sin��� − sin��S� cos��� sinF� − �originG]% 

Figures 

 

Example Oblique Mercator Spherical map projection 
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Element Specification 

Notes 

1) The method for specifying the central line by specifying two points on the 
central line can be accomplished by alternative formulations. The formulations 
for two such alternatives are provided below. 

Alternative a): 
In this alternative the user specifies �origin the longitude of one of the two 

points where the central line crosses the equator and �S the equator crossing 
angle at that point. 
The CS parameters are:  �origin, �S, �S, 3£,  and 5£. 

The CS parameter constraints are:  0 < |�S| < � 2⁄ , and −� < �origin ≤ � 

Alternative b): 

In this alternative, a point �λ1, ϕ1� on the central line, a central line crossing 
angle �) at the point, and k0 at the point are specified. The central line 
crossing angle is the angle between the central line and the parallel through 
the given point. The positive sense of the angle is counterclockwise from east. 

In this case the origin F�origin, 0Gand the equator crossing �S are computed. 

The CS parameters are:  �), �), �), �S, 3£, and 5£. 

The CS parameter constraints are:  0 < |�)| < � 2⁄ ,−� < �) ≤ � , |�)| ≠ � 2⁄  

The mathematical formulation is: ²)∗ = arctan2�cos��)� sin��)� , sin��)��, �origin = ²Ø��),  ²)∗�,  and �S = arccos�cos��)� cos��)�� �principal value�. 
2) Point distortion is equal to k0 at all points on the central line. 

3) The longitude of origin �origin is related to the pole longitude �î in [SNYD] by �origin = �î + � 2⁄ . 

References [SNYD], [THOM] 

5.3.8.14 Transverse Mercator CS specification 

Table 5.20 — Transverse Mercator CS 

Element Specification 

Description Transverse Mercator and Augmented Transverse Mercator map projections 

CS label TRANSVERSE_MERCATOR 

CS code 13 

Function type Mapping equations 

CS descriptor Surface (map projection) and 3D (augmented map projection) 

Properties Orthogonal, conformal 

CS parameters and 
constraints 

§:  oblate ellipsoid major semi-axis �§ > 0� ©:  oblate ellipsoid eccentricity �0 ≤ © < 1� �origin:  longitude of origin in radians �−� < �origin ≤ �� �origin:  latitude of origin in radians �−� < �origin ≤ �� �S:  central scale  �0 < �S� 3F:  false easting 5F:  false northing 
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Coordinate-
components 

u:  easting, and 
v:  northing. 

Augmented coordinate: 
 h: ellipsoidal height 

MP Domain 
T��, �) in ℝ%U −� < � − �origin ≤ �  and − �2 <  � < �2  and not AW 
Condition A:  � = 0 and �1 − ©� �2 ≤ ÂΛCF�, �origin GÂ ≤ �1 + ©� �2  

Mapping equations 

3 = �)��, �� = 3£ + §�ï3∗, and 

5 = �%��, �� = 5£ + �ï \§5∗ − wF�originG] , 
where: 

5∗ + I3∗ = �1 − ©%� ­ bð�b��ð ©%⁄ ��%
h

S , I% =  −1 

w is the solution to the equation: ¨�6� = » + I²∗, with » = arctanhFsin���G − © arctanhF© ⋅ sin���G , 
²∗ = ²ØF�, �originG, and 

¨�6� = arctanhFsn�6|©%�G � © ⋅ arctanhF© ⋅ sn�6|©%�G 

The solution w is determined by Newton’s method for complex functions, 6 ' lim�→Ð 6� 

6S ' arcsin(tanh(» 4 I²∗)) (principal value), 
6�Ò) ' 6� � ¨(6�) � (» 4 I²∗)¨Å(6�) ,     � ' 0,1,2,3. . . , and 

¨ ′�6� = 1 − ©%cn�6|©%� ⋅ dn�6|©%�. 

Domain of the inverse 

T�3, 5� in ℝ%U  |3 � 3£| < x and |5 � 5£| < 2�S¬ \�2]W 
where: x ' �S§(1 � ©%) ­ sin%(®)�1 � (1 � ©%) sin%(®)

¼%
S b® 
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Inverse 

� ' �)(3, 5) ' ΛØFΛ∗, ��originG, � ' �%(3, 5) 

where: » 4 IΛ∗ ' arctanhFsn(6|©%�G � © ⋅ arctanhF© ⋅ sn�6|©%�G,    I% ' �1. 
6 is determined by Newton’s method for complex functions: 6 ' lim�→Ð 6� 

 6S ' 5∗ 4 I3∗, 
 3∗ ' 3 � 3Ô§�S , 
 5∗ ' 5 � 5Ô 4 �S¬F�originG§�S , 

 6�Ò) ' 6� � ¨(6�) � 6S¨ ′(6�)  ,      � ' 0,1,2,3, … , 
 ¨�6� = �1 − ©%� ­ bð�dn�ð|©%��%

h
S , 

 ¨ ′(6) ' (1 � ©%)�dn(6|©%��%. 
� is determined by functional iteration on the equation for isometric latitude »:  � ' lim�→Ð��, 

 �S ' 2 arctan�exp�»�� � �2 , and 

��Ò) ' 2 arctan ·�exp�»�� µ1 4 © sin(��)1 � © sin(��)¶Ö%¸ � �2  , � ' 0,1,2,3, … . 

COM 

���, �� = arctan2 ª�5∗�� , �3∗�� « 

where: 

�5∗�� + I �3∗�� = I cn�6|©%�
dn�6|©%� , and 

w is the intermediate value computed in the mapping equations for (�, �) 

Point distortion 

�(�, �) ' §�ï�(�) òóË(�) ôcn(6|©%�dn�6|©%�ô 
where w is the intermediate value computed in the mapping equations for ��, �) 

Simplification in the case of a sphere: �(�, �) ' �oÌ1 � cos%(�) sin
%F� � �originG. 
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Figures 

 

Example Transverse Mercator map projection 

Notes 

1) As noted in [SNYD] and [LLEE], an iterative exact solution for the transverse 
Mercator forward and inverse conversions were developed by Prof. E. H. 
Thompson in 1945 and formally published by L. P. Lee in 1962 [LLEE] with 
the permission of Professor Thompson. In contrast to approximate forms over 
limited areas near the central meridian, the Lee/Thompson formulation 
provides an exact solution over almost all the ellipsoid. The forward and 
inverse mapping equations used in this International Standard are an 
adaptation of these based on additional work by C. Rollins of the United 
States National Geospatial-Intelligence Agency (NGA) to include a central 
scale factor, a non-zero latitude origin and false easting and false northing 
offsets for both the easting and northing coordinate-components. 

2) The complex functions sn(w |ε2), cn(w |ε2) and dn(w |ε2) are defined in A.8.2. 

3) The CS generating function is extended by continuity to include the oblate 
ellipsoid pole points. 

4) The domain of the inverse mapping equations covers the main region of 
interest. This domain can be extended to a larger region whose exact 
specification is complicated to define.  

5) The iterative procedures used in both the forward and inverse formulations 
may be numerically ill conditioned near certain points. This occurs near the 
boundaries of the domains involved and near the equator for points with 
negative u values. When implementing these methods in software, special 
numerical methods may be required in the neighbourhood of such exceptional 
points. In particular, in the forward conversion, the exceptional points on the 
equator are avoided by restricting the procedure to use |Λ*| and then setting u 

to be negative when Λ*< 0. 

6) The point distortion equals �Salong the meridian at �origin. 
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References [LLEE], [SNYD], and [DOZI]. 

5.3.8.15 Lambert Conformal Conic CS specification 

Table 5.21 — Lambert conformal Conic CS 

Element Specification 

Description 
Lambert Conformal Conic and Augmented Lambert Conformal Conic map 
projections 

CS label LAMBERT_CONFORMAL_CONIC 

CS code 14 

Function type Mapping equations 

CS descriptor Surface (map projection) and 3D (augmented map projection) 

Properties Orthogonal, conformal 

CS parameters and 
constraints 

§: oblate ellipsoid major semi-axis (§ > 0� ©: oblate ellipsoid eccentricity �0 ≤ © < 1� �origin: latitude of the origin in radians �− � 2⁄ < �origin < � 2⁄ � �origin: longitude of origin in radians �−� < �origin ≤ �� �), �%: secant latitudes in radians �−� 2⁄ < �) < � 2⁄ , −� 2⁄ < �% < � 2⁄ � �), �%: �) ≠ −�% 3£: false easting 5£: false northing 

Coordinate-
components 

u:  easting, and 
v:  northing. 

Augmented coordinate: 
 h: ellipsoidal height 

MP Domain T��, �) in ℝ%U −� < � − �origin ≤ �  and − �2 <  � < �2W 
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Mapping equations 

3 = �)��, �� = 3£ + ���� sin��Λ∗� , and 5 = �%��, �� = 5£ + �F�originG − ���� cos��Λ∗� , 
where: 

Λ∗ = ΛØF�, −�originG, 
���� = �S µ õ���õ��S�¶M , 

�S = §�S ���S�� , 
õ��� = tan \�4 − �2] #1 + © sin���1 − © sin���$Ö% , 

���� = cos����1 − ©% sin%��� , 
�S = ���)����S� µõ��S�õ��)�¶M , 
�S = arcsin��� �principal value�, and 

� = ¯ sin��)� if  �) = �%lnF���)�G − lnF���%�GlnFõ��)�G − lnFõ��%�G if  �) ≠ �%. 

Domain of the inverse ö�3, 5� in ℝ%÷  �3, 5� ≠ \3F, 5F + �F�originG]  and                        Âarctan2F3 − 3F, �F�originG − 5 + 5FGÂ < �|�| ø 

Inverse 

� = �)�3, 5� = ²ØF²∗,  −�originG,  and � = �%�3, 5� = lim�→∞
�%��3, 5�, 

where: 

²∗ = 1� arctan2 \sgn����3 − 3£�, sgn���F�F�originG − 5 + 5£G] 

�%S�3, 5� = �2 − 2 arctanFð�3, 5�G , 
�%�Ò)�3, 5� = �2 − 2 arctan ¯ð�3, 5� µ1 − © sinF�%��3, 5�G1 + © sinF�%��3, 5�G¶Ö%ù ,   for � = 1,2,3, . . . , 

ð�3, 5� = õ��S� µÑ�3, 5��S ¶)M , 
Ñ�3, 5� = sgn���Ì�3 − 3£� + ^�F�originG − 5 + 5£_,  and 

�, �S, õ��S�, and �F�originG are defined in the forward mapping equations field. 

COM ���, �� = �Λ∗ where:Λ∗ = ²°F�, �originG. 
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Point distortion ���, �� = ���)����� µ õ���õ��)�¶M = �����§���� �equivalent expression� 

Figures 

 

Example Lambert Conformal Conic map projection 

Notes 

1) sgn� �� is the signum function (see ISO 80000-2). 

2) The Surface Geodetic coordinate F�origin, �originGprojects to map coordinate �3£, 5£�. 
3) The point distortion is unity along the standard parallel(s) ϕ1 and ϕ2. 

4) An alternate CS parameter set is given by: §, ©, �origin, �origin, 3£, 5£, and central scale �S, �0 < �S ≤ 1�, 
where k0 is a user specified point distortion at F�origin, �originG. 
In this case, the k0 replaces the computed intermediate variable in the 

mapping equations and the computed intermediate variables ϕ0 and n are set 

as �S = �origin, and � = sin��S�. 

References [SNYD] 

5.3.8.16 Polar Stereographic CS specification 

Table 5.22 — Polar Stereographic CS 

Element Specification 

Description Polar Stereographic and Augmented Polar Stereographic map projections 

CS label POLAR_STEREOGRAPHIC 

CS code 15 

Function type Mapping equations 

CS descriptor Surface (map projection) and 3D (augmented map projection) 

Properties Orthogonal, conformal 
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CS parameters and 
constraints 

§:  oblate ellipsoid major semi-axis �§ > 0�  ©:  oblate ellipsoid eccentricity �0 ≤ © < 1� 
polar aspect:  north or south �origin:  longitude of origin in radians �−� < �origin ≤ �� �origin = ½+ � 2⁄ north aspect− � 2⁄ south aspect

 �S:  central scale  �1 2⁄ ≤ �S ≤ 1� 3F:  false easting 5F:  false northing 

Coordinate-
components 

u:  easting, and 
v:  northing. 

Augmented coordinate: 
 h: ellipsoidal height 

MP Domain 

North aspect: T��, �)  in ℝ%  U −� < � − �origin ≤ �  and 0 ≤ � < �2W  ∪ T \0, + �2] W 

South aspect: T��, ��  in ℝ%  U −� < � − �origin ≤ �  and − �2 < � ≤ 0 W  ∪ T \0, − �2] W 

Mapping equations 

North aspect: 3 = �)��, �� = 3£ + ���� sinF� − �originG , 5 = �%��, �� = 5£ − ���� cosF� − �originG 

South aspect: 3 = �)��, �� = 3£ + ���� sinF� − �originG , 5 = �%��, �� = 5£ + ���� cosF� − �originG 

where: ���� = 2§�Súõ���, 
õ��� = tan µ�4 − |�|2 ¶ #1 + © sin�|�|�1 − © sin�|�|�$Ö% ,  and 

ú = �§ ª1 − ©1 + ©«Ö%. 
Domain of the inverse 

H�3, 5� in ℝ%|  �3 − 3£�% +  �5 − 5£�% < �2§�Sú�%K 

E is defined in the forward mapping equations field. 



ISO/IEC 18026:2023(E) 

 

94 © ISO/IEC 2023 – All rights reserved

 

Element Specification 

Inverse 

� = �)�3, 5� = ΛØF²∗, −�originG, 
where: 

²∗ = ½arctan2�3 − 3£, −5 + 5£� north aspectarctan2�3 − 3£, 5 − 5£�    south aspect
 

For ϕ, functional iteration is used for the representation of the inverse mapping 
equation. Superscripts involving m indicate elements in the iteration sequence. 

� = ö lim�→∞
�%��3, 5� north aspect− lim�→∞
�%��3, 5� south aspect

  
where: �%S�3, 5� = �2 − 2 arctanFð�3, 5�G 

�%�Ò)�3, 5� = �2 − 2 arctan ¯ð�3, 5� µ1 − © sinF�%��3, 5�G1 + © sinF�%��3, 5�G¶Ö%ù  for  � = 1,2,3, … , 
ð�3, 5� = ��3 − 3£�% + �5 − 5£�%2§�Sú  

E is defined in the forward mapping equations field. 

COM ���, �� = ½ ²∗ north aspect−²∗ south aspect
 where:Λ∗ = ²°F�, �originG. 

Point distortion 
���, �� = 2§�Súõ������� cos��� 

where:  õ��� and E are defined in the forward mapping equations field 

Figures 

 

Example Polar Stereographic map projection 

See also Figure 5.19. 
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Notes 

1) Meridians project as straight lines radiating from the point �3£, 5£�.  
Parallels project to concentric circles. 

2) The point distortion values at pole is:  �F�, �ïy|û|MG = �S. 

3) An alternate CS parameter set is given by:  §, ©, �origin, �origin, 3Ô , 5Ô ,  and �): the secant latitude in radians 0 ≤ �) < � 2⁄ north aspect,− � 2⁄ < �) ≤ 0 south aspect.
 

This reduces to the specified CS parameter set by assigning: �S = ���)� cos��)�2§úõ��)�  

where:  õ��� and E are defined in the forward mapping equations field, with 

this value for k0:  ���, �)� = 1. 
4) In the case of a sphere, the mapping equations are derived from the 

stereographic projection (see Figure 5.19).  

5) The CS generating function is extended by continuity to include the oblate 
ellipsoid pole points: ��, �� = �0, ± � 2⁄ �.  

References [SNYD] 

5.3.8.17 Equidistant Cylindrical CS specification 

Table 5.23 — Equidistant Cylindrical CS 

Element Specification 

Description Equidistant Cylindrical and Augmented Equidistant Cylindrical map projections 

CS label EQUIDISTANT_CYLINDRICAL 

CS code 16 

Function type Mapping equations 

CS descriptor Surface (map projection) and 3D (augmented map projection) 

Properties Orthogonal, non-conformal 

CS parameters and 
constraints 

§:  oblate ellipsoid major semi-axis �§ > 0� ©:  oblate ellipsoid eccentricity �0 ≤ © < 1� �origin:  longitude of origin in radians F−� < �origin ≤ �G �S:  central scale �0 < �S ≤ 1� 3£:  false easting 5£:  false northing 

Coordinate-
components 

u:  easting, and 
v:  northing. 

Augmented coordinate: 
 h: ellipsoidal height 

MP Domain T��, �) in ℝ%U −� < � − �origin ≤ �  and − �2 <  � < �2W 
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Mapping equations 

3 = �)��, �� = 3F + §�SΛ∗, 5 = �%��, �� = 5F + ¬���, 
where:      Λ∗ = ΛCF� − �origin G 
if © = 0,   5 = �%��, �� = 3F + §�. 

Domain of the inverse T�3, 5�  in ℝ% U−�§�S < 3 − 3F ≤ �§�S  and − ¬ \ �2 ] < 5 − 5F < ¬ \ �2 ]W 

Inverse 

� = �)�3, 5� = ΛC ª3 − 3F§�S , −�origin « 
� = �%�3, 5� = ¬t)�5 − 5F�. 

if © = 0,   � = �%�3, 5� = 5 − 5F§ . 
COM ���, �� = 0 

Point distortion 

���, �� = 1                      latitudinal point distortion    
���, �� = §�S����cos��� longitudinal point distortion

 

if © = 0,    ���, �� = �Scos���  

Figures 

 

Example Equidistant Cylindrical map projection 

Notes 

1) Meridians project as straight lines that satisfy equations of the form u = some 
constant. Equally-spaced meridians project to evenly-spaced straight lines 
orthogonal to the u-axis. Parallels project to straight lines orthogonal to the 
projected meridians and satisfy equations of the form v = some constant.  

2) ���, �� = �S on the equator �� = 0�. ���, �� = 1 indicates true scale, or 
"equidistance" along meridians. 

3) The radius R of the conceptual cylinder is R = ak0. 

4) An alternate CS parameter set is given by: 
 §, ©, �origin, 3£, 5£,  and �):  the northern secant latitude in radians.  This reduces 

to the specified CS parameter set by assigning: �S = 1§ ���)� cos��)� 

In this case, ���, �)� = 1 at the secant latitudes � = ±�). 

References [SNYD] 
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5.3.8.18 Surface Geodetic CS specification 

Table 5.24 — Surface Geodetic CS 

Element Specification 

Description Surface Geodetic 

CS label SURFACE_GEODETIC 

CS code 17 

Function type Generating function 

CS descriptor Surface curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

a:  major semi-axis length 
b:  minor semi-axis length 

Constraints: 
 a > b:  (oblate ellipsoid) 

 a = b:  (sphere) 

Coordinate-
components 

λ:  longitude in radians, and 

ϕ:  geodetic latitude in radians. 

CS Domain T��, ��  in ℝ%  U −� < � ≤ �  and − �2 < � < �2 W  ∪ T \0, + �2] ,   \0, − �2] W 

Generating function 

EF��, ��G = · ���� cos��� cos������� cos��� sin����1 − ©%����� sin���¸ = EG3DF��, �, 0�G 

Simplification if:  § = � = Ñ: 
EF��, ��G = ·Ñ cos��� cos���Ñ cos��� sin���Ñ sin��� ¸ 

Domain of the inverse ½��, �, "� in ℝ+c  �%§% + �%§% + "%�% = 1ý 
Inverse 

Et)���, �, "��� = \arctan2��, ��,   arctan2 \", �1 − ©%���% + �%] ] = ��, �� 

Simplification if:  § = � = Ñ: � = arcsin�" Ñ⁄ �  (principal value) 

COM n/a 

Point distortion n/a 
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Figures 

 

Notes 

1) The CS range is the oblate ellipsoid (or sphere) surface excluding the pole 
points. 

2) This CS is the 3rd induced surface CS for the Geodetic 3D CS (Table 5.14) at 
any coordinate for which h = 0 (see 5.3.4.2). 

3) If a = b, the geodetic latitude ϕ coincides with the spherical latitude θ (see 
Table 5.10). 

4) The inverse generating function is not continuous at the pole points �0, ± � 2⁄ �. 
References [HEIK] 

5.3.8.19 Surface Planetodetic CS specification 

Table 5.25 — Surface Planetodetic CS 

Element Specification 

Description Surface Planetodetic. Surface Geodetic with longitude in opposite direction 

CS label SURFACE_PLANETODETIC 

CS code 18 

Function type Generating function 

CS descriptor Surface curvilinear 

Properties Orthogonal 



 ISO/IEC 18026:2023(E)  

 

© ISO/IEC 2023 – All rights reserved 99

 

Element Specification 

CS parameters and 
constraints 

a:  major semi-axis length 
b:  minor semi-axis length 

Constraints: 
 a > b:  (oblate ellipsoid) 

 a = b:  (sphere) 

Coordinate-components 
ϕ   geodetic latitude in radians, and 

λ:  planetodetic longitude in radians. 

CS Domain T��, ��  in ℝ% U − �2 < � < �2   and  − � < � ≤ �W ∪ T \0, + �2] ,   \0, − �2] W 

Generating function 
EF��, ��G = vGDF�−�, ��G, 
where:  EGD is the Surface Geodetic CS generating function 

Domain of the inverse ½��, �, "� in ℝ+c �%§% + �%§% + "%�% = 1ý 
Inverse 

Et)���, �, "��� = ��, ��  
where:  ��, �� = EGD

t) ���, −�, "���, 
and EGD

t)  is the Surface Geodetic CS inverse generating function. 

COM n/a 

Point distortion n/a 

Figures 
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Notes 

1) Similar to surface Geodetic CS (see Table 5.24) except that longitude is in 
the opposite direction. In particular, points on a planet surface rotating 
(prograde) into view have larger planetodetic longitudes than those points 
rotating out of view. 

2) The inverse generating function is not continuous at the pole points �0, ± � 2⁄ �. 
3) The coordinate-components are ordered for compatibility with Planetodetic 

3D CS (see Table 5.15). 

4) This CS is the 3rd induced surface CS for the Planetodetic 3D CS at any 
coordinate for which h = 0 (see 5.3.4.2). 

References [RIIC06] 

5.3.8.20 Lococentric Surface Euclidean CS specification 

Table 5.26 — Lococentric Surface Euclidean CS 

Element Specification 

Description Localization of the Euclidean 2D CS into a plane surface in 3D position-space 

CS label LOCOCENTRIC_SURFACE_EUCLIDEAN 

CS code 19 

Function type Generating function 

CS descriptor Surface linear 

Properties Cartesian 

CS parameters and 
constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ+, and 

 r, s:  axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-components u, v 

CS Domain ℝ% 

Generating function 

EF�3, 5�G = lSurface ∘ EE2DF�3, 5�G = ��, �, "�� where:  � = 1 • (),   � = 1 • (%,    " = 1 • (+,1 =  - + 3 . + 5 /,lSurface =  the surface localization operator, and EE2D =  the Euclidean 2D CS generating function

 

Domain of the inverse H1 = ��, �, "� in ℝ+|�1 − -� • �. × /� = 0K 

Inverse 

Et7���, �, "��� = EE2D
t) ∘  lSurface

t)  ���, �, "��� = �3, 5� where:  3 = �1 − -� • .,   5 = �1 − -� • /,1 =  �� () + � (% + " (+�,lSurface
t) =  the inverse surface localization operator, andEE2D

t) =  the Euclidean 2D CS inverse generating function
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COM n/a 

Point distortion n/a 

Figures 

 
 

Notes 

1) The CS range is the plane specified by:  0 = ¨�1� = �1 − -� • �. × /�. 
The generating function is the composition of the generating function for 
Euclidean 2D (see Table 5.29) with the surface localization operator (see 
5.3.6.2). This CS is also the 3rd induced surface CS for the Lococentric 
Euclidean 3D CS (Table 5.9) at any coordinate for which w = 0 (see 5.3.4.2) 

2) An alternate CS parameter set is given by: 

q:  the lococentric origin in ℝ%, and 

r:  the primary axis direction unit vector in ℝ%. 

s is then computed as / = \ 0 −1 1   0 ] .. 

References [EDM] 

5.3.8.21 Lococentric Surface Azimuthal CS specification 

Table 5.27 — Lococentric Surface Azimuthal CS 

Element Specification 

Description Localization of the Azimuthal CS into a plane surface in 3D position-space. 

CS label LOCOCENTRIC_SURFACE_AZIMUTHAL 

CS code 20 

Function type Generating function 

CS descriptor Surface curvilinear 
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Properties Orthogonal 

CS parameters and 
constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ+, and 

 r, s:  axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

α:  azimuth in radians, and 

ρ:  radius. 

CS Domain H��, �� in ℝ% | 0 ≤ � < 2�,  and 0 < �K   ∪   H�0,0�K  

Generating function 

EF��, ��G = lSurface ∘ EAF��, ��G = ��, �, "�� where:  � = 1 • (),   � = 1 • (%,    " = 1 • (+,1 =  - + �� sin��� . + cos��� /�,lSurface =  the surface localization operator, and EA =  the Azimuthal CS generating function

 

Domain of the inverse H1 = ��, �, "� in ℝ+| �1 − -� • �. × /� = 0K 

Inverse 

Et7���, �, "��� = EA
t) ∘  lSurface

t)  ���, �, "��� = ��, ��,
where: � = ½ arctan2�3, 5� if 3 ≥ 02� + arctan2�3, 5� if 3 < 0  � = �3% + 5%   3 = �1 − -�• .,    5 = �1 − -� • /, 1 =  �� () + � (% + " (+�,lSurface

t) =  the inverse surface localization operator, and EA
t) =  the Azimuthal CS inverse generating function

 

COM n/a 

Point distortion n/a 
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Figures 

 

Notes 

1) The CS range is the plane specified by:  0 = ¨�1� = �1 − -� • �. × /�. 

2) The generating function is the composition of the generating function for 
Azimuthal CS (see Table 5.31) with the surface localization operator (see 
5.3.6.2). This CS is also the 3rd induced surface CS for the Lococentric 
Azimuthal Spherical CS (Table 5.12) at any coordinate for which 
 = 0 (see 
5.3.4.2). 

3) An alternate CS parameter set is given by: 

q:  the lococentric origin in ℝ%, and 

r:  the primary axis direction unit vector in ℝ%. 

s is then computed as / = \ 0 −1 1   0 ] .. 
References [EDM] 

5.3.8.22 Lococentric Surface Polar CS specification 

Table 5.28 — Lococentric Surface Polar CS 

Element Specification 

Description Localization of the Polar CS into plane surface in 3D position-space 

CS label LOCOCENTRIC_SURFACE_POLAR 

CS code 21 

Function type Generating function 

CS descriptor Surface curvilinear 

Properties Orthogonal 
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Element Specification 

CS parameters 
and constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ+, and 

 r, s:  axis directions in ℝ+. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

ρ:  radius, and 

θ:  angle in radians. 

CS Domain H��, 
� in ℝ% | 0 < �  and 0 ≤ 
 < 2�K   ∪   H�0,0�K  
Generating 
function 

EF��, 
�G = lSurface ∘ EPF��, 
�G = ��, �, "�� where:  � = 1 • (),  � = 1 • (%,  " = 1 • (+,1 =  - + � cos�
�  . + � sin�
�  /,lSurface =  the surface localization operator, and EP =  the Polar CS generating function

 

Domain of the 
inverse 

H1 = ��, �, "� in ℝ+| �1 − -� • �. × /� = 0K 

Inverse 

Et7���, �, "��� = EP
t) ∘  lSurface

t)  ���, �, "��� = ��, 
�,
where: � = �3% + 5%,   
 = ½ arctan2�5, 6� if  5 ≥ 02π + arctan2�5, 6�  if  5 < 0, 3 = �1 − -� • .,   5 = �1 − -� • /,   6 = �1 − -� • �. × /�,1 =  �� () + � (% + " (+�,lSurface

t) =  the surface localization inverse operator, andEP
t) =  the Polar CS inverse generating function

 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The CS range is the plane specified by:  0 = ¨�1� = �1 − -� • �. × /�. 

2) The generating function is the composition of the generating function for Polar CS 
(see Table 5.33) with the surface localization operator (see 5.3.6.2). This CS is 
also the 3rd induced surface CS for the Lococentric Cylindrical CS (Table 5.17) at 
any coordinate for which h = 0 (see 5.3.4.2). 

3) An alternate CS parameter set is given by: 

q:  the lococentric origin in ℝ%, and 

r:  the primary axis direction unit vector in ℝ%. 

s is then computed as / = \ 0 −1 1   0 ] .. 
References [EDM] 

5.3.8.23 Euclidean 2D CS specification 

Table 5.29 — Euclidean 2D CS 

Element Specification 

Description Euclidean 2D 

CS label EUCLIDEAN_2D 

CS code 22 

Function type Generating function 

CS descriptor 2D linear 

Properties Cartesian 
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Element Specification 

CS parameters and 
constraints 

none 

Coordinate-components u, v 

CS Domain ℝ% 

Generating function EE2DF�3, 5�G = 3() + 5(% =  35! 
Domain of the inverse ℝ% 

Inverse EE2D
t7 ��3,  5��� = �3,  5� 

COM n/a 

Point distortion n/a 

Figures 

 

Notes Coordinate-space 2-tuples are identified with position-space 2-tuples. 

References [EDM] 

5.3.8.24 Lococentric Euclidean 2D CS specification 

Table 5.30 — Lococentric Euclidean 2D CS 

Element Specification 

Description Localization of the Euclidean 2D CS. 

CS label LOCOCENTRIC_EUCLIDEAN_2D 

CS code 23 

Function type Generating function 
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Element Specification 

CS descriptor 2D linear 

Properties Cartesian 

CS parameters and 
constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ%, and 

 r, s:  axis directions in ℝ%. 

Constraints:  
 r and s are orthonormal. 

Coordinate-components u, v 

CS Domain ℝ% 

Generating function 

EF�3, 5�G = l2D ∘ EE2DF�3, 5�G = ��, �, "�� where:  � = 1 • (),   � = 1 • (%,1 =  - + 3 . + 5 /,l2D =  the 2D localization operator, and EE2D =  the Euclidean 2D generating function

 

Domain of the inverse ℝ% 

Inverse 

Et7F�3, 5�G = l2D
t7 ∘ EE2D

t7 F�3, 5�G = ��, �, "�� where:  � = 1 • (),   � = 1 • (%,1 =  - + 3 . + 5 /,l2D
t7 =  the 2D localization operator, and EE2D

t7 =  the Euclidean 2D generating function

 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) Euclidean 2D CS is a special case with  - = �0,0�,  . = �1,0�,  / = �0,1�. 

2) The generating function is the composition of the generating function for 
Euclidean 2D CS (see Table 5.29) with the 2D localization operator (see 
5.3.6.2). 

3) An alternate CS parameter set is given by: 

q: the lococentric origin in ℝ%, and 

r: the primary axis direction unit vector in ℝ%. 

s is then computed as / = \ 0 −1 1   0 ] .. 
References [EDM] 

5.3.8.25 Azimuthal CS specification 

Table 5.31 — Azimuthal CS 

Element Specification 

Description Azimuthal coordinate system 

CS label AZIMUTHAL 

CS code 24 

Function type Generating function 

CS descriptor 2D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

none 
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Element Specification 

Coordinate-components 
α:  azimuth in radians, and 

ρ:  radius. 

CS Domain H��, �� in ℝ% | 0 ≤ � < 2�  and 0 < �K  ∪   H�0,0�K 
Generating function EAF��, ��G = �� sin���� cos���� 
Domain of the inverse ℝ% 

Inverse 

EAt)���, ���� = ��, ��, 
where: � = ½ arctan2��, �� if � ≥ 02� + arctan2��, �� if � < 0 

and � = ��% + �%. 
COM n/a 

Point distortion n/a 

Figures 

 

Notes 
The inverse generating function is discontinuous at the CS domain boundary 
point �0, 0�. 

References [EDM]  

5.3.8.26 Lococentric Azimuthal CS specification 

Table 5.32 — Lococentric Azimuthal CS 

Element Specification 

Description Localization of the Azimuthal CS 

CS label LOCOCENTRIC_AZIMUTHAL 



ISO/IEC 18026:2023(E) 

 

110 © ISO/IEC 2023 – All rights reserved

 

Element Specification 

CS code 25 

Function type Generating function 

CS descriptor 2D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ%, and 

 r, s:  axis directions in ℝ%. 

Constraints:  
 r and s are orthonormal. 

Coordinate-
components 

α:  azimuth in radians, and 

ρ:  radius. 

CS Domain H��, �� in ℝ% | 0 ≤ � < 2�  and 0 < �K  ∪   H�0,0�K  

Generating function 

EF��, ��G = l2D ∘ EAF��, ��G = ��, ��� where:  � = 1 • (),   � = 1 • (%,1 =  - + �� sin��� . + cos��� /�,l2D =  the 2D localization operator, and EA =  the Azimuthal CS generating function.
 

Domain of the inverse ℝ% 

Inverse 

Et7���, ���� = EA
t) ∘  l2D

t) ���, ���� = ��, ��, 
where: � = ½ arctan2�3, 5� if 3 ≥ 02� + arctan2�3, 5� if 3 < 0 

� = �3% + 5% 3 = 1 • .,    5 = 1 • /, 1 =  �� () + � (%� − -, l2D
t) =  the inverse 2D localization operator, and  EA
t) =  the Azimuthal CS inverse generating function. 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The generating function is the composition of the generating function for the 
Azimuthal CS (see Table 5.31) with the 2D localization operator (see 5.3.6.2). 

2) An alternate CS parameter set is given by: 

q:  the lococentric origin in ℝ%, and 

r:  the primary axis direction unit vector in ℝ%. 

s is then computed as / = \ 0 −1 1   0 ] .. 
References [EDM] 

5.3.8.27 Polar CS specification 

Table 5.33 — Polar CS 

Element Specification 

Description Polar coordinate system 

CS label POLAR 

CS code 26 

Function type Generating function 

CS descriptor 2D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

none 

Coordinate-
components 

ρ:  radius, and 

θ:  angle in radians. 
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Element Specification 

CS Domain H��, 
� in ℝ% | 0 < �  and 0 ≤ 
 < 2πK  ∪   H�0,0�K 
Generating function EPF��, 
�G = �� cos�
�� sin�
�� 
Domain of the inverse ℝ% 

Inverse 

EP
t)���, ���� = ��, 
�,

where: 
 = ½ arctan2��, ��         if � ≥ 0         2� + arctan2��, �� if � < 0, and
 

� = ��% + �%.
 

COM n/a 

Point distortion n/a 

Figures 

 

Notes 
The inverse generating function is discontinuous at the CS domain boundary point 
(0, 0). 

References [EDM] 

5.3.8.28 Lococentric Polar CS specification 

Table 5.34 — Lococentric Polar CS 

Element Specification 

Description Localization of the Polar CS 

CS label LOCOCENTRIC_POLAR 

CS code 27 
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Element Specification 

Function type Generating function 

CS descriptor 2D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ%, and 

 r, s:  axis directions in ℝ%. 

Constraints: 
 r and s are orthonormal. 

Coordinate-
components 

ρ:  radius, and 

θ:  angle in radians. 

CS Domain H��, 
� in ℝ% | 0 < �  and 0 ≤ 
 < 2πK  ∪   H�0,0�K 

Generating function 

EF��, 
�G = l2D ∘ EPF��, 
�G = ��, ��� where:  � = 1 • (),   � = 1 • (%,1 =  - + � cos�
� . + � sin�
� /,l2D =  the 3D localization operator, and EP =  the Cylindrical CS generating function

 

Domain of the inverse ℝ% 

Inverse 

Et)���, ���� = EP
t) ∘  l2D

t) ���, ���� = ��, 
�,
where: � = �3% + 5%,   
 = ½ arctan2�5, 3�         if 5 ≥ 0 2� + arctan2�5, 3� if 5 < 0, 3 = 1 • .,   5 = 1 • /,1 =  �� () + � (%� − -,l2D

t) =  the 2D localization inverse operator, and EP
t) =  the Polar CS inverse generating function 

 

COM n/a 

Point distortion n/a 
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Element Specification 

Figures 

 

Notes 

1) The generating function is the composition of the generating function for the 
Polar CS (see Table 5.33) with the 2D localization operator (see 5.3.6.2). 

2) An alternate CS parameter set is given by: 

q:  the lococentric origin in ℝ%, and 

r:  the primary axis direction unit vector in ℝ%. 

s is then computed as / = \ 0 −1 1   0 ] .. 
References [EDM] 

5.3.8.29 Euclidean 1D CS specification 

Table 5.35 — Euclidean 1D CS 

Element Specification 

Description Euclidean 1D 

CS label EUCLIDEAN_1D 

CS code 28 

Function type Generating function 

CS descriptor 1D linear 

Properties none 

CS parameters and 
constraints 

none 

Coordinate-components u 
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Element Specification 

CS Domain ℝ) 

Generating function 
EE1D�3� = ��� 

where:  � = 3. 
Domain of the inverse ℝ) 

Inverse 
EE1D

t) ��� = �3� 

where:  3 = �. 
COM n/a 

Point distortion n/a 

Figures none 

Notes 

1) Coordinate-space 1-tuples are identified with position-space 1-tuples.  

2) This abstract coordinate system is also used to realize temporal coordinate 
systems (see 5.5). 

References [EDM] 

5.3.8.30 Azimuthal Cylindrical CS specification 

Table 5.36 — Azimuthal Cylindrical CS 

Element Azimuthal Cylindrical 

Description Azimuthal Cylindrical 

CS label AZIMUTHAL_CYLINDRICAL 

CS code 29 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

none 

Coordinate-
components 

�:  angle, in radians, �:  radius, and ℎ:  height. 

CS Domain H��, �, ℎ� in ℝ+ |0 ≤ § < 2� and  � ≥ 0K  ∪  H�0,0, ℎ�| ℎ in ℝK 
Generating function E��, �, ℎ� = �� sin �� cos �     ℎ � = #��"$ 
Domain of the inverse ℝ+ 

Inverse 

Et)F ��, �, "�T G = ��, �, ℎ� 

where: 

� = ½arctan2��, ��,              if � ≥ 0arctan2��, �� + 2�,   if � < 0 

� ' ��% 4 �% 

ℎ = " 
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Element Azimuthal Cylindrical 

COM n/a 

Point distortion n/a 

Figures 

 

Notes 
�t) is discontinuous on the half-plane defined: all ��, �, "�T in ℝ+ that satisfy � = 0 

and � ¾ 0. 

References [EDM] 

5.3.8.31 Lococentric Azimuthal Cylindrical CS specification 

Table 5.37 — Lococentric Azimuthal Cylindrical CS 

Element Lococentric Azimuthal Cylindrical 

Description Localization of the Azimuthal Cylindrical CS 

CS label LOCOCENTRIC_AZIMUTHAL_CYLINDRICAL 

CS code 30 

Function type Generating function 

CS descriptor 3D curvilinear 

Properties Orthogonal 

CS parameters and 
constraints 

Localization parameters: 

 q:  the lococentric origin in ℝ+, and 

 r, s:  axis directions in ℝ+. 

Constraints: 
 r and s are orthonormal. 
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Element Lococentric Azimuthal Cylindrical 

Coordinate-
components 

�:  angle, in radians, 

�:  radius, and 

ℎ:  height. 

CS Domain H��, �, ℎ� in ℝ+ |0 ≤ § < 2� and  � ¾ 0K  ∪  H�0,0, ℎ�| ℎ in ℝK 

Generating function 

E��, �, ℎ� = l3D ∘ EACF��, �, ℎ�G = ��, �, "�⊤ 
where:  � = 1 • (),   � = 1 • (%,    " = 1 • (+, 

1 =  - + � sin��� . 4 � cos��� / 4 ℎ. n /, 
l3D =  the 3D localization operator, and 
EAC =  the Azimuthal Cylindrical CS generating function. 

Domain of the inverse ℝ+ 

Inverse 

Et)� ��, �, "�� � ' EAC
t) ∘  l3D

t) ���, �, "��� ' ��, �, ℎ� 
where: � = ½ arctan2�3, 5�         if 3 ¾ 0

2� + arctan2�3, 5� if 3 � 0 
� = �3% + 5% 
ℎ = 1 • �. n /�,   3 ' 1 • .,    5 ' 1 • /, 3 ' 1 • .,    5 ' 1 • /, 1 '  �� () 4 � (% 4 " (+� � -, l3D

t) '  the inverse 3D localization operator, and EAC
t) '  the Azimuthal Cylindrical CS inverse generating function.  

COM n/a 

Point distortion n/a 

Figures 

 

Notes 
Et) is discontinuous on the half-plane defined: all ��, �, "�T in ℝ+ that satisfy:  
H ��, �, "��  |   ���, �, "�� � -� • . ' 0,   ���, �, "�� � -� • / ¾ 0K. 

References [EDM] 
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5.4 Spatial coordinate systems 

5.4.1 Introduction 

A spatial coordinate system is an extension of an abstract coordinate system to object-space in that it assigns 
a unique coordinate n-tuple to each point in a region of an n-dimensional object-space. The generating 
function of an abstract coordinate system specifies vector values in terms of the position-space basis vectors. 
To extend the abstract coordinate system generating function to object-space, a specification of an 
orthonormal frame within the object-space is required. This frame can be specified with a normal embedding. 
A normal embedding is a length preserving isomorphism between the position-space and the object-space. 
This isomorphism provides the object-space an orthonormal frame termed the embedded frame (see 5.2.5). 
The spatial coordinate system assignment function is specified as the functional composition of the abstract 
coordinate system generating function followed by the normal embedding function. The abstract coordinate 
system generating function takes a coordinate to a position vector in position-space. The normal embedding 
then takes the position vector to its corresponding point in the embedded frame of the object-space, thus 
completing the coordinate to object-space point assignment. The advantage of this two-part approach is that 
an abstract coordinate system specification can be used with many different object-spaces of the same 
dimension, as well as with a single object-space with many different normal embeddings. 

 

Figure 5.23 — Coordinate-space, position-space, and object-space relationships 

Figure 5.23 illustrates the relationships between coordinate-space, position-space, object-space, the CS 
generating function, and a normal embedding for a spherical coordinate system. 

5.4.2 Definition 

A spatial coordinate system assigns a unique coordinate n-tuple to each point in a region of object-space.  A 
spatial coordinate system has a domain in coordinate-space, a range in object-space, and a generating 
function that assigns a unique coordinate in the domain to each point in the object-space range.  

This standard uses abstract CSs together with normal embeddings to create spatial CSs. Given an object-
space and a normal embedding of position-space into that object-space, any abstract CS for a region of the 
position-space can be used to define a spatial CS with a generating function that takes the form: 1 ' = ∘ E�>�  

where: 
 c is a coordinate in the CS domain, 
 G is the CS generating function, 
 E is the normal embedding function, and 
 p is the point in object-space associated with c. 

In the case where the abstract CS specification is parameterized (5.3.2), the CS parameter values shall be 
specified to complete the specification of G. The composed function, = ∘ E, is termed the spatial CS 
generating function.  
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Abstract CS types (5.3.3) and properties (5.3.5) are ascribed to a spatial CS as determined by the abstract 
CS. This method of creating spatial CSs has the advantage that an abstract coordinate system specification 
can be used with many different object-spaces of the same dimension, as well as with a single object-space 
with many different normal embeddings (see Example 1).  

Localized frames and local tangent frames in object-space are defined for orthogonal spatial CSs as in 5.3.6.2 
with the embedded frame replacing the role of position-space. Vector reference frames with respect to the 
embedded frame within object-space are similarly defined. 

If an abstract CS with generating function E is localized with a localization operator l and localization 

parameters, -, ., /, the resulting localized abstract coordinate system has generating function l ∘ E (see 
5.3.6.2). When the normal embedding = is applied to such a localized abstract coordinate system, the 

resulting localized spatial coordinate system has spatial generating function = ∘ l ∘ E. The localization 

parameters -, ., /, are vectors in the canonical orthonormal frame of position-space. The embedding function = is an isomorphism between the position-space frame and the embedded frame in object-space, thus the 

object-space vectors, =�-�, =�.�, =�/�, have the same coordinate-component values as the corresponding 

position-space vectors -, ., /. 

 

Figure 5.24 — A spatial CS of type surface 

Figure 5.24 illustrates a spatial CS derived from a surface abstract CS and a 3D normal embedding. In this 
illustration, a surface coordinate (u, v) in coordinate-space is assigned to a position vector [x, y, z] in position-
space. Thatposition then identifies a location in the space of an object via the normal embedding of position-
space. The normal embedding is determined by the selection of an origin and three orthogonal unit vectors in 
the object-space of the physical object. (The surface is not required to include any part of the physical object.) 

 

Figure 5.25 — Two spatial coordinate systems for the same object-space 

EXAMPLE 1 Two coordinate tuples, c1 and c2, in the coordinate domain of an abstract Euclidean 3D CS are mapped 
by the generating function G into corresponding position vectors E�>)� and E�>%� in 3D position-space. E1 and E2 are two 
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distinct normal embeddings of 3D position-space into an object-space. One spatial Euclidean 3D CS is defined by the 
composition of the normal embedding E1 with the generating function G. This composition =) ∘ E functionally maps the 

coordinate c1 to the point p in object-space. In this example, the second normal embedding E2 is also composed with 
generating function G to define a second distinct spatial Euclidean 3D CS. The composition =% ∘ E functionally maps c2 to 

the same point p in the object-space. Thus, the point p has Euclidean 3D coordinate c1 in the first spatial CS, and 
Euclidean 3D coordinate c2 in the second spatial CS. The relationship between the point p and the coordinates c1 and c2 is 
given by 1 ≡ =)�E�>)�� ≡ =%�E�>%��. In Figure 5.25 the two embedded frames in object-space for the two normal 

embeddings are depicted in two different colours. 

EXAMPLE 2 An engineering model is designed in abstract 3D Euclidean space using the Euclidean CS. In this simple 

case, coordinate-space, position-space, and object-space all have identical structure (the generating function and normal 
embedding are both the identity operator). However, each of the three spaces (coordinate-space, position-space, and 

object-space) serves a distinct role. 

5.5 Temporal coordinate systems 

5.5.1 Introduction 

Time and position are often used together by an application to describe when a given condition exists or when 
an object was present at a given location. Furthermore, in dynamic physical systems, the normal embedding 
that maps position-space to an object-space may change over time. As a result, the relationship between 
coordinates and positions is time dependent. Thus, there is a requirement to identify time as well as position in 
environmental representation. In such systems, time, and time differences, must be taken into account in 
order to accurately determine positions and position differences. 

This International Standard uses the concept of time in several ways. An object reference model (see 7.4) has 
either a static or dynamic binding to a spatial object. In the latter case, time is a parameter of the reference 
transformation (see 7.4.5) that specifies the binding (see 7.5). Spatial reference frames (see Clause 8) that 
are based on dynamic object reference models also depend on a time parameter. These dynamic cases 
reduce to the corresponding static cases by fixing a value for the time parameter. 

Time also plays a role in static object reference model bindings that are based on physical measurements of 
objects or systems that change with time. A time stamp is used to identify the epoch for which these 
measurements are applicable. 

A temporal coordinate system is a realization of an abstract Euclidean 1D coordinate system (see Table 5.35) 
that assigns a one-to-one monotonically increasing relationship between temporal coordinate values and 
instants in time, such that larger coordinate values are assigned to later instants in time. A temporal 
coordinate system is used to associate a unique time with an event or reference. 

An integrated temporal coordinate system is a type of temporal coordinate system that fixes an origin (termed 
the epoch) and then continuously integrates duration units as they occur. An integrated temporal coordinate 
system is based on a duration unit derived from a periodic physical phenomenon, such as an atomic 
resonance frequency. 

A dynamic temporal coordinate system is a type of temporal coordinate system that is based on a 
mathematical model of a dynamic physical system, typically planetary motion, where time is one of the 
parameters that unambiguously identifies the configuration of the system. The initial conditions of the physical 
system specify the origin epoch. Observed configurations of the physical system are associated with the time 
parameter of the mathematical model to specify the dynamic temporal coordinate system. 

An integrated temporal coordinate system differs from a dynamic temporal coordinate system in that the 
former accumulates the duration of a periodic phenomenon while the latter ties a mathematical model 
parameter to the state of a physical system. 
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5.5.2 Universal time 

Universal time (UT) is a general designation of a set of dynamic temporal coordinate systems based on the 
rotation of the Earth. There are different forms of UT whose values may differ by a few hundredths of a 
second: 

a) Universal Time observed (UT0) is the mean solar time at the prime meridian obtained from direct 
astronomical observation. 

b) Universal Time polar motion corrected (UT1) is UT0 corrected for the effects of small movements of 
the Earth relative to the axis of rotation (polar variation). 

c) Universal Time Earth rotation corrected (UT2) is UT1 corrected for the effects of a small seasonal 
fluctuation in the rate of rotation of the Earth. 

Complete definitions of UT0, UT1, UT2, and the concepts involved in their definitions may be found in the 
publications of the International Earth Rotation and Reference Systems Service [IERS] that maintains these 
three temporal coordinate systems. 

5.5.3 International atomic time 

International atomic time (TAI) is the integrated temporal coordinate system with the SI second as unit of 
duration and origin epoch defined so that the difference between UT1 and TAI is zero on 1 January 1958. TAI 
is maintained by the Bureau International des Poids et Mesures (International Bureau of Weights and 
Measures) (BIPM) and is generated by collecting and combining the data from a worldwide ensemble of 
atomic clocks. 

5.5.4 Coordinated universal time 

Coordinated universal time (UTC)  is a temporal coordinate system that is based on both TAI and UT1.  UTC 
is specified by the Radio Communication Bureau of the International Telecommunication Union (ITU-R) in 
publication TF.460-6:2002 [I460]. It is a compromise between highly stable TAI and irregular UT. UTC is 
maintained by the BIPM with assistance from the IERS. As currently defined, UTC runs at the same rate as 
TAI but is adjusted by the insertion or deletion of seconds (termed positive or negative leap-seconds) to 
ensure approximate agreement with UT1 to within 0,9 seconds, which is sufficient for purposes of 
astronomical navigation. As a consequence, UTC and TAI differ by an integer number of seconds. On 01 
January 2022, TAI was 37 seconds ahead of UTC. 

5.5.5 Specified temporal coordinate systems 

This International Standard provides standard codes and labels to identify temporal coordinate systems. The 
codes and labels are defined by specifying all elements presented in Table 5.38. The standard codes and 
labels are specified in Table 5.39. Additional temporal coordinate systems may be specified by registration in 
accordance with Clause 13. 

Table 5.38 — Temporal coordinate system specification elements 

Element Definition 

Temporal CS label The label (see 13.2.2) for the temporal coordinate system. 

Temporal CS code The code (see 13.2.3) for the temporal coordinate system. 

Description A description of the temporal coordinate system, including any common name. 

Reference(s) The reference(s) (see 13.2.5) for the definitions of the temporal coordinate system. 

https://www.iers.org/
https://www.bipm.org/en/time-metrology
https://www.bipm.org/en/time-metrology
https://www.iers.org/


ISO/IEC 18026:2023(E) 

 

122 © ISO/IEC 2023 – All rights reserved

 

Table 5.39 — Temporal coordinate system specifications 

Temporal CS 
label 

Temporal CS 
code 

Description Reference(s) 

TAI 1 International atomic time (TAI) [I460] 

UTC 2 Coordinated universal time (UTC) [I460] 

In this International Standard, times and dates refer to UTC unless explicitly indicated otherwise.  Whenever a 
temporal coordinate system other than UTC is required, that temporal coordinate system shall be explicitly 
specified.  Local realizations of UTC may differ by tens of nanoseconds so that real-time applications that 
require nanosecond accuracy shall reference the appropriate realization of UTC. 

 

http://standards.iso.org/ittf/PubliclyAvailableStandards/ 
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