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Annex A 
(normative) 

 
Mathematical foundations 

A.1 Introduction 

This annex identifies the concepts from mathematics used in this International Standard and specifies the 
notation used for those concepts. A reader of this International Standard is assumed to be familiar with 
mathematics including set theory, linear algebra, and the calculus of several real variables as presented in 
reference works such as the Encyclopedic Dictionary of Mathematics [EDM]. 

A.2 ℝ� as a real vector space 

An ordered set of n real numbers a where n is a natural number is termed an n-tuple of real numbers and shall 
be denoted by � = ���, �	, �
,⋅⋅⋅, ��
 The set of all n-tuples of real numbers is denoted by ℝ�. ℝ� is an n-
dimensional vector space. 

The canonical basis for ℝ� is defined as: 
 �� = �1,0,⋅⋅⋅ ,0
, �	 = �0,1,⋅⋅⋅ ,0
,⋅⋅⋅, �� = �0,0,⋅⋅⋅ ,1
.  

The elements of ℝ�may be termed points or vectors. The latter term is used in the context of directions or vector 
space operations. 

The zero vector �0,0,⋅⋅⋅ ,0
 is denoted by 0. 

Definitions A.2(a) through A.2(j) apply to any vectors � = ���, �	,⋅⋅⋅, ��
 and � = ���, �	,⋅⋅⋅, ��
 in ℝ�: 

a) The inner product or dot-product of two vectors x and y is defined as: 
 � • � = ���� + �	�	 +⋅⋅⋅ +����. 

 

b) Two vectors x and y are termed orthogonal if � • � = 0.  

c) If n ≥ 2, two vectors x and y are termed perpendicular if and only if they are orthogonal. 

NOTE 1 If n ≥ 2, � • � = ‖�‖‖�‖ cos��� where α is the angle between x and y. 

d) x is termed orthogonal to a set of vectors if x is orthogonal to each vector that is a member of the set. 

e) The norm of x is defined as  
 ‖�‖ = √� • �. 

 

NOTE 2 The norm of x represents the length of the vector x. Only the zero vector 0 has norm zero. 

f) x is termed a unit vector if ‖�‖ = 1. 

g) A set of two or more orthogonal unit vectors is termed an orthonormal set of vectors.  

EXAMPLE   The canonical basis is an example of an orthonormal set of vectors. 

h) The Euclidean metric d is defined by  
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 !��, �� = ‖� − �‖. 
 

i) The value of !��, �� is termed the Euclidean distance between x and y. 

j) The cross product of two vectors x and y in ℝ
 is defined as the vector: 
 � × � = ��	�
 − �
�	 , �
�� − ���
, ���	 − �	��
. 

 

NOTE 3 The vector x × y is orthogonal to both x and y, and  

 ‖� × $‖ = ‖�‖‖�‖ sin���, 
 

where α is the angle between vectors x and y. 

A.3 The point set topology of ℝ� 

Given a point p in ℝ� and a real value ε > 0, the set () +, ℝ�|!�., )� < 01 is termed the ε-neighbourhood of p. 

Given a set D ⊂ ℝ� and a point p, the following terms are defined: 

a) p is an interior point of D if at least one ε-neighbourhood of p is a subset of D. 

b) The interior of a set D is the set of all points that are interior points of D.  

NOTE 1 The interior of a set may be empty. 

c) D is open if each point of D is an interior point of D. Consequently, D is open if it is equal to its interior. 

d) p is a closure point of D if every ε-neighbourhood of p has a non-empty intersection with D.  

NOTE 2 Every member of D is a closure point of D. 

e) The closure of a set D is the set of all points that are closure points of D. 

f) D is a closed set if it is equal to the closure set of D. 

g) A set D is replete if all points in D belong to the closure of the interior of D. 

NOTE 3 Every open set is replete. The union of an open set with any or all of its closure points forms a replete set. In 

particular, the closure of an open set is replete. 

EXAMPLE 1 In ℝ	 (��, ��|−3 < � < 3, − 3 2 < � < 3 2⁄⁄ 1 is open and therefore replete. 

EXAMPLE 2 (��, ��|−3 < � ≤ 3, − 3 2 < � < 3 2⁄⁄ 1 is replete. 

EXAMPLE 3 (��, ��|−3 < � ≤ 3, − 3 2 ≤ � ≤ 3 2⁄⁄ 1 is closed and replete. 

A.4 Smooth functions on ℝ� 

A real-valued function f defined on a replete domain in ℝ� is termed smooth if it is continuous and its first 
derivative exists and is continuous at each point in the interior of its domain.  

The gradient of f is the vector of first order partial derivatives 
 789:�;� = < =;=>� , =;=>	 ,⋅⋅⋅, =;=>�?.  

Definitions A.4(a) through A.4(g) apply to any vector-valued function F defined on a replete domain D in ℝ� with 

range in ℝ@. 
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a) The jth-component function of a vector-valued function F is the real-valued function fj defined by  ;A = �A • B  where ej is the jth canonical basis vector, C = 1,  2,⋅⋅⋅, D.  

In this case: 
 B�E� = �;��E�, ;	�E�, ;
�E�, … , ;@�E�
 for E = �>�, >	, >
, … , >�
 in D. 

 

b) F is termed smooth if each component function fj is smooth. 

c) The first derivative of a smooth vector-valued function F, denoted =B, evaluated at a point in the domain 

is the n × m matrix of partial derivatives evaluated at the point: 
 GHIJHKLM   + = 1,  2,⋅⋅⋅, , and C = 1,2,⋅⋅⋅, D. 

 

d) The Jacobian matrix of F at the point v is the matrix of the first derivative of F.  

NOTE 1 The rows of the Jacobian matrix are the gradients of the component functions of F. 

e) In the case m = n, the Jacobian matrix is square and its determinant is termed the Jacobian determinant. 

f) In the case m = n, F is termed orientation preserving if its Jacobian determinant is strictly positive for all 
points in D. 

g) A vector-valued function F defined on ℝ� is linear if: 
 B��� + �� = �B��� + B��� for all real scalars a and vectors x and y in ℝ� 

 

NOTE 2 All linear functions are smooth. 

A vector-valued function E defined on ℝ� is affine if F, defined by B��� = P��� − P�Q�, is a linear function. All 

affine functions on ℝ� are smooth. 

A function may be alternatively termed an operator especially when attention is focused on how the function 
maps a set of points in its domain onto a corresponding set of points in its range. 

EXAMPLE   The localization operators (see 5.3.6.2). 

A.5 Functional composition 

If F and G are two vector valued functions and the range of G is contained in the domain of F, then B ∘ S, the 

composition of F with G, is the function defined by B ∘ S��� ≡ BUS���V.  B ∘ S has the same domain as G, and 

the range of B ∘ S is contained in the range of F. 

Functional composition also applies to scalar-valued functions f and g, If the range of g is contained in the 

domain of f, then ; ∘ W���, the composition of f with g, is the function defined by ; ∘ W��� ≡ ;UW���V. 
A.6 Smooth surfaces in ℝX 

A.6.1 Implicit definition 

A smooth surface in ℝ
 is implicitly specified by a real-valued smooth function f defined on ℝ
 as the set S of all 

points (x, y, z) in ℝ
 satisfying: 

a) ;��, �, Y� = 0 and 

b) 789:�;���, �, Y� ≠ Q. 

In this case, f is termed a surface generating function for the surface S. 
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EXAMPLE 1 If n ≠ 0 and p are vectors in ℝ
 and ;�>� = � • �E − .�, then f is smooth and 789:�;� = � ≠ 0. The plane 

which is perpendicular to n and contains p is the smooth surface implicitly defined by the surface generating function f. 

Special cases: 

When n = (1, 0, 0) and p = 0, the yz-plane is implicitly defined. 

When n = (0, 1, 0) and p = 0, the xz-plane is implicitly defined. 

When n = (0, 0, 1) and p = 0, the xy-plane is implicitly defined. 

The surface normal n at a point p = (x, y, z) on the surface implicitly specified by a surface generating function f 
is defined as: 

 � ≡ 1‖789:�;��.�‖ 789:�;��.�.  

NOTE   −n is also a surface normal to S at p. The surface generating function f determines the surface normal direction: n 

or −n. 

The tangent plane to a surface at a point p = (x, y, z) on the surface S implicitly defined by a surface generating 

function f is the plane which is the smooth surface implicitly defined by ℎ�>� = � • �E − .� where n is the surface 
normal to S at p. 

EXAMPLE 2 If a and b are positive non-zero scalars, define 

 ;��, �, Y� = \]^] + _]^] + `]a] − 1. 
 

Then f is smooth and 

 789:�;���, �, Y� = b2��	 , 2��	 , 2Yc	d 
 

is never (0, 0, 0) on the surface implicitly specified by the set satisfying f = 0. 

A.6.2 Ellipsoid surfaces 

If a and b are positive non-zero scalars, the smooth function: 
 ;��, �, Y� = �	�	 + �	�	 + Y	c	 − 1 

 

is a surface generating function for an ellipsoid of revolution smooth surface S. 

When b ≤ a, the surface is termed an oblate ellipsoid. In this case a is termed the major semi-axis31 of the oblate 
ellipsoid and b is termed the minor semi-axis of the oblate ellipsoid. 

The flattening of an oblate ellipsoid is defined as ; = ^ea^ . 

The eccentricity of an oblate ellipsoid is defined as 0 = f1 − �c �⁄ �	. 

The second eccentricity of an oblate ellipsoid is defined as 0 ′ = f�� c⁄ �	 − 1. 

When  b = a, the oblate ellipsoid may be termed a sphere of radius r = b = a. 

When a < b, the surface is termed a prolate ellipsoid. In this case, a is termed the minor semi-axis of the prolate 
ellipsoid and b is termed the major semi-axis of the prolate ellipsoid. 

NOTE 1 A sphere of radius r is also implicitly defined by the surface generating function ;��, �, Y� = �	 + �	 + Y	 − g	. 
 

31 a is half the length of the major axis. ISO 19111  labels the symbol a as the semi-major axis. 
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NOTE 2 The term spheroid is often used to denote an oblate ellipsoid with an eccentricity close to zero (“almost 

spherical”). 

A.7 Smooth curves in ℝ� 

A.7.1 Parametric definition 

A.7.1.1 Smooth curve 

A smooth curve in ℝ� is parametrically specified by a smooth one-to-one ℝ� valued function F(t) defined on a 

replete interval I in ℝ such that ‖=B�h�‖ ≠ 0, for any t in I.  

EXAMPLE 1 If p and n are vectors in ℝ� such that n ≠ 0 and i�h� = . + h �, −∞ < k < +∞, then L is smooth and ‖=i�h�‖ = ‖�‖ > 0. The line which is parallel to n and which contains p is a smooth curve parametrically specified by L. 

EXAMPLE 2 If a and b are positive non-zero scalars and b ≤ a, define 

 B�h� = �� cos�h� , c sin�h�� for all t in the interval −3 < h ≤ 3. 
 

Then F is smooth and ‖=B�h�‖ ≥ c > 0 for all t in the interval and therefore parametrically specifies a smooth curve in ℝ	. 

An ellipse in ℝ	 with major semi-axis a and minor semi-axis b, 0 < b ≤ a, is parametrically specified by: 
 B�h� = �� cos�h� , c sin�h�� for all t in the interval −3 < h ≤ 3. 

 

A.7.1.2 Tangent to a smooth curve 

If C(t) parametrically specifies a smooth curve C passing through a point p = C(tp), the tangent vector to C at p 
shall be defined as: 

 k = 1m:nUhoVm :nUhoV  

where :nUhoV = �dp� dh,  dp	 dh,⁄ … , dp� dh ⁄⁄ 
 is the first derivative of C evaluated at tp.  

NOTE   −t is also a tangent vector to C at p. The parameterization function C(t) determines the tangent vector direction: t 

or −t. 

A locus of points is a directed curve if it is the range of a smooth curve. 

The tangent line to the curve C at p is a smooth curve parametrically specified by q�r� = . + r k, −∞ < r < +∞, 
where t is a tangent vector to C at p. See Figure A.1. 

 C(t) 

p = C(tp) 

t 

T(s) 

 

Figure A.1 — Tangent to a curve 
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A.7.1.3 Angle between curves 

If two parametrically specified smooth curves C1 and C2 intersect at a point p then the angle at p from C1 to C2  
is defined as the angle from the tangent vector t1 to the tangent vector t2 of the two curves, respectively, at p. 
This is illustrated in Figure A.2. 

 

C1 

p 

t1 

t2 

C2 

 

Figure A.2 — Angle between two curves 

If a smooth curve C passes through a non-polar point p on an ellipsoid and the meridian at p is parameterized 
to start at the south pole and end at the north pole, then the azimuth of C at p is the clockwise angle at p from 
the meridian to C.   

A.7.1.4 Closed curve 

If a smooth function F is defined on a closed and bounded interval I with interval end points t0 and t1 and if F 
parametrically specifies a smooth curve on the interior of I and p = F(t0) = F(t1), then F generates a closed 
curve through p. 

EXAMPLE   B�h� = �� cos�h� , c sin�h��, for all t in the interval −3 + s ≤ h ≤ 3 + s.  

If a and b are positive non-zero scalars and θ is given, F generates a closed curve though . = �� cos�3 + s� , c sin�3 + s��. 

A.7.1.5 Surface curves, connected and orientable surfaces 

If C is a smooth curve in ℝ
 parametrically specified by F on the interval I and if S is a smooth surface generated 
by a surface generating function g, then C is a surface curve in S if W ∘ B�h� = 0 for all t in I. In this case C shall 
be said to lie in S.  

EXAMPLE 1 If S is a smooth surface with generating function g and if C(s) defines a surface curve in S which passes 

through p = C(sp), then the tangent line to the curve at p, q�r� = . + r :nUhoV,  lies32 in the tangent plane to the surface S at 

p. This is illustrated in Figure A.3.  

 

32 Since W ∘ n�h� = 0, the chain rule implies that 789:�W� • !n = dUW ∘ n�h�V dh⁄ = 0, so that � • :n = 0, where n is the 

surface normal at p. ℎ�E� = � • �E − .� defines the tangent plane to the surface S at p. ℎUq�r�V = ℎ t. + r!nUh.Vu = � •U. + r!nUh.V − .V = r�� • !n� = 0 so the tangent line lies in the tangent plane. 
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p 

S 

 

Figure A.3 — Tangent plane to a surface 

A smooth surface S is connected if for any two distinct points in S, there exists a smooth surface curve 
parametrically specified by a smooth function defined on a bounded interval that lies in S and that contains the 
two points on the curve. 

A connected surface S is termed an orientable surface if the normal vector at an arbitrary point p on S can be 
continued in a unique and continuous manner to the entire surface. A normal vector at a fixed point p0 may be 
continued if there does not exist a closed curve C in S through p0 such that the normal vector direction reverses 
when it is displaced continuously from p0 along C and back to p0.  

An oriented surface is an orientable surface in which one side has been designated as positive. 

EXAMPLE 2 If S is implicitly defined by f = 0, the side bounding the set satisfying f > 0 is designated as the positive side. 

EXAMPLE 3 A Möbius strip is an example of a non-orientable surface. 

NOTE   If S is implicitly specified, it is an orientable surface33. 

A.7.2 Implicit definition  

A smooth curve in ℝ	 may be implicitly specified by a real-valued smooth function f on ℝ	 as the set S of all 

points (x, y) in ℝ	 satisfying: 

a) ;��, �� = 0 and 

b) 789:�;���, �� ≠ �0,0
. 
In this case, f is termed a curve generating function for the curve C. 

EXAMPLE   If a and b are positive non-zero scalars, define 

 ;��, �� = �	�	 + �	c	 − 1 
. 

 

Then f is smooth and 

 789:�;���, �� = <2��	 , 2�c	?  

is never (0, 0) on the curve f = 0.  

If 0 < b ≤ a, an ellipse in ℝ	 with major semi-axis a and minor semi-axis b, is implicitly specified by the curve 
generating function defined by: 

 ;��, �� = \]^] + _]a] − 1. 
 

 

33 Since a surface generating function for S is smooth, its gradient is continuous. Therefore the surface normal will be a 

continuous function of points on a curve that lies in S. 
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A.7.3 Arc length 

If p = C(tp) and q = C(tq) are two points on a smooth surface curve defined by C and tp < tq, the arc length of the 
curve segment with endpoints p and q is defined by the quantity: 

 v ‖:n�h�‖wxwy  dh.  

A.7.4 Geodesics on an ellipsoid 

There are several equivalent ways to define geodesics. This definition is specific to ellipsoids. Using the surface 

geodetic coordinate system on an oblate ellipsoid, a smooth surface curve Uz�r�, {�r�V parameterized by arc 

length s, is a geodesic if and only if it satisfies the following three differential equations: 

 !{!r = cos �|}�{� , !z!r = sin �|~�{� cos { ,  and !�!r = sin { !z!r, 
 

where α is the azimuth of the curve at the point �z�r�, {�r�
, ℳ is the radius of curvature in the meridian, and � is the radius of curvature in the prime vertical (functions ℳ and � are defined in Table 5.6.). 

Every smooth surface curve in an oblate ellipsoid surface satisfies the first two equations. The third equation, 
known in geodesy as Bessel's equation, is a necessary and sufficient condition for a smooth surface curve to 
be a geodesic (see [RAPP1]).   

A.8   Special functions 

A.8.1 Double argument arctangent function 

The two-argument form of inverse tangent, arctan2��, ��, returns a value adjusted by the quadrant of the point ��, ��. Given real numbers x y and ,  arctan2��, �� = s 
where θ is the unique value satisfying −3 < s ≤ 3 and 

if r = 0, 

 θ = 0, else 

if r > 0, 

 x = r cos θ, and  

 y = r sin θ 

where: 

 g = f�	 + �	. 
NOTE   If � > 0, then arctan2��, �� = arctan ��� �⁄  ”�g+,�+��� >����. ”  Some software implementation libraries reverse 

the roles of x and y. 

A.8.2 Jacobian elliptic functions 

Jacobian elliptic functions are defined in terms of certain elliptic integrals. There are many equivalent definitions, 
each involving special notation (see [ABST]). The notation used in this International Standard is given here. 

The elliptic integral of the first kind is defined by: 
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;�{|0	� = � !�f1 − 0	 r+,	����
� ,  

and ;−1��|0^2 � is its inverse.  
the Jacobian elliptic functions used in this International Standard are defined by, 

If � = ;�{|0	�, sn��|0	� = sin�{� , cn��|0	� = cos�{� , and dn��|0	� = f1 − 0	 sin	�{� 
where: { = ;e���|0	�. 

Series expansions for these Jacobian elliptic functions are given in [ABST]. 

NOTE   The complex functions "r,” ��|0	�, ”�,” ��|0	�, and “!,” ��|0	� are termed Jacobian elliptic functions in [ABST] 

and [DOZI] and are termed Jacobi functions in [LLEE]. 

A.9   Projection function 

A.9.1 Geometric projection functions into a developable surface 

A projection function in ℝ
 is a smooth function defined on a connected replete domain in ℝ
onto a surface in 
the domain whose points are all fixed points of the function. Projection functions defined below project their 
domain onto such a plane, cone, or cylinder surface and are classified as planar, conic, or cylindrical projection 
functions according to the class of the fixed-point surface. 

NOTE   Some map projections CSs (see 5.3.7) are unrelated to any geometric projection. 

A.9.2 Planar projection functions 

A.9.2.1 Orthographic projection function 

Given a plane in ℝ
, the domain of the orthographic projection function is either all ℝ
or the half space on one 
side of (and including) the plane. Given a point x in the domain, if x is not in the plane, there is one line that both 
passes through x and is perpendicular to the plane. If p is the point at the intersection of that line with the plane, 
the projection F assigns the value p to x. That is F(x) = p. If the point x lies in the plane, F(x) = x so that points 

in the plane are fixed points of the projection. In the case that the plane is the xy-plane, F(x, y, z) = (x, y, 0). See 
Figure A.4. 
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Figure A.4 — Orthographic projection 

A.9.2.2 Perspective projection function 

Given a plane in ℝ
and a point v (the vanishing point) not contained in the plane, the domain of the perspective 

projection function is the set of all points of ℝ
in the half space (including the plane) that does not contain the 
point v. Given a point x in the domain, there is one line that passes through both x and v. If p is the point at the 
intersection of the line with the plane, the projection F assigns the value p to x. That is F(x) = p. If point q lies in 

the plane, F(q) = q so that it is a fixed point of the projection. See Figure A.5. 

 

Figure A.5 — Perspective projection 

A.9.2.3 Stereographic projection function 

Given a plane in ℝ
and a point v not contained in the plane, the domain of the stereographic projection function 

is the set of all points of ℝ
in the half space on the point v side of (and including) the plane that are closer to the 
plane than the distance of v to the plane. Given a point x in the domain, there is one line that passes through 

 

x   

p  

F (x) = F(p) = p 

  

x 

p 

v 

x’ 

p’ 

F(x) = F(p) = p 
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both x and v. If p is the point at the intersection of the line with the plane, the projection F assigns the value p to 
x. That is F(x) = p. If point q lies in the plane, F(q) = q so that it is a fixed point of the projection. See Figure A.6. 

 

Figure A.6 — Stereographic projection 

A.9.3 Cylindrical projection function 

Given a cylinder and point v on its axis, a cylindrical projection function is defined on the domain ℝ
excluding 
the axis points as follows: Given a point x in the domain, there is one ray originating at v that passes through x. 
If p is the point at the intersection of the ray with the cylinder surface, the projection F assigns the value p to x. 
That is F(x) = p. If point q lies on the cylinder surface, F(q) = q so that it is a fixed point of the projection. See 
Figure A.7.  

 

Figure A.7 — Cylindrical projection 

x  

p 

v 

x1  

p 1 

F(x) = F(p) = p 

v  
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x1  
 

F (x) = F(p) = p 
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A.9.4 Conic projection function 

Given a (half) cone and point v on its axis inside the cone, a conic projection function projects a point x to the 
point p where p is the intersection of the cone with the ray from v through x. The domain of this projection is the 
union of all rays originating at v that intersects the cone and excluding the point v. See Figure A.8. 

 

Figure A.8 — Conic projection 

A.10 Quaternion Algebra 

Let . = !� � !�� � !	� � !
� and � = �� � ��� � �	� � �
� be two quaternions and let t  be a scalar. Quaternion 

addition and scalar multiplication (in each notational convention) is defined as usual for 4D vector space: 

. � h) = �!� � h��� � �!� � h���� � �!	 � h�	�� � �!
 � h�
�� �Hamiltion form
 = �!� � h��,   � � h��                                                                 �scalar vector form
 = �!� � h��,  !� � h��,  !	 � h�	,  !
 � h�
�                         �4-tuple form
 
Assuming associative multiplication, the quaternion axes relationships give the quaternion multiplication rule (in 
each notational convention):  

.) = �!��� " !��� " !	�	 " !
�
� ��!��� � !��� � !	�
 " !
�	�� ��!	�� � !��	 � !
�� " !��
�� ��!
�� � !��
 � !��	 " !	����
                     �Hamiltion form
 

= U�!��� " � • ��, ���� � !�� � � # ��V    �Scalar vector form
 
=

⎣⎢
⎢⎡�!��� " !��� " !	�	 " !
�
�,�!��� � !��� � !	�
 " !
�	�,�!	�� � !��	 � !
�� " !��
�,�!
�� � !��
 � !��	 " !	��� ⎦⎥

⎥⎤                   �4-tuple form
 

Quaternion multiplication is not commutative (the cross product term in the scalar vector form is anti-symmetric). 
However, the quaternion addition and multiplication operations together form an associative algebra. 

p  
v  

x  

F (x) = F(p) = p 
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The conjugate of a quaternion q  is defined analogously with complex numbers: 

)∗ = �� " ��� " �	� " �
� �Hamiltion form
 = ���, −��                        �scalar vector form
 = ���, −��, −�	, −�
�    �4-tuple form
 
The modulus of a quaternion is defined as the square root of the product of the quaternion with its conjugate: 

|)| = f))∗ = f��	 + ��	 + �		 + �
	, where: ))∗ = )∗) = ��	 + ��	 + �		 + �
	                          �Hamiltion form
 = ���	 + ��	 + �		 + �
	,   0�               �scalar vector form
 = ���	 + ��	 + �		 + �
	,   0,   0,   0� �4-tuple form
 
A quaternion q  is a unit quaternion if |)| = 1. In that case ))∗ = )∗) = 1, which implies that for a unit quaternion, 

its conjugate is its multiplicative inverse )e� = )∗.  More generally, the inverse of a (non-unit) quaternion p  is .e� = .∗..∗ = �∗|.|]. 

A.11 Body-fixed rotations in terms of space-fixed axes 

In the body-fixed convention (defined in 6.4.2.4), the origin-fixed rotation ��〈s〉 followed by the origin-fixed 

rotation ��〈{〉
 
is the composite operation �� 〈{〉 ∘ ��〈s〉 where �′ = ��〈s〉��� is the axis of the second rotation 

operator after rotation by the first rotation operator. 

Define the operator � as � = ��〈s〉 ∘ ��〈{〉 ∘ ��e�〈s〉. Then: ���′� = ��〈s〉 ∘ ��〈{〉 ∘ ��e�〈s〉��′� = ��〈s〉 ∘ ��〈{〉 ∘ ��e�〈s〉U��〈s〉���V       substitute for �′ = ��〈s〉 ∘ ��〈{〉 ∘ ���e�〈s〉 ∘ ��〈s〉����   replace ��e�〈s〉 ∘ ��〈s〉 = ¢ = ��〈s〉 ∘ ��〈{〉���                                        substitute for ��〈{〉��� = ��〈s〉��� = �′. 
Thus �′ is a unit eigenvector for �. Euler’s rotation theorem (see 6.4.2.1) then implies that � = �� 〈±{〉 with 

the sign of { is to be determined. As can be seen from Rodrigues’ rotation formula (Equations 6.2 and 6.6) the 

limit ¤¥¦§→Q ��〈s〉 = ¢ is the identity operator, taking that limit in the expression for ���′� yields +{ as the correct 

sign of the rotation angle. Hence, �� 〈{〉 = ��〈s〉 ∘ ��⟨{⟩ ∘ ��e�〈s〉. 
Substitution of this result in the expression �� 〈{〉 ∘ ��〈s〉 yields: �� 〈{〉 ∘ ��〈s〉 = ���〈s〉 ∘ ��〈{〉 ∘ ��e�〈s〉� ∘ ��〈s〉            substute for �� 〈{〉 = ��〈s〉 ∘ ��〈{〉 ∘ ���e�〈s〉 ∘ ��〈s〉�            replace ��e�〈s〉 ∘ ��〈s〉 = ¢ = ��〈s〉 ∘ ��〈{〉. 
Thus, the body-fixed composite operator �� 〈{〉 ∘ ��〈s〉 which uses the rotated axis �′ is equal to the composite 

operator ��〈s〉 ∘ ��〈{〉 that uses the non-rotated axes � and �. 

A similar result is true for non-origin-fixed rotations. Let ��,k〈s〉 denote a rotation through angle s about the 

directed axis (k + ��|� ∈ ℝ1 passing through the position vector k and parallel to the unit vector �, and let ��,¬〈{〉 denote a rotation through angle { about the directed axis (¬ + ��|� ∈ ℝ1 passing through the position 

vector ¬ and parallel to the unit vector �. 
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Consider the consecutive rotations ��,k〈s〉 and ��,¬〈{〉 in the body-fixed convention. The first rotation ��,k〈s〉 
does not affect the directed axis (k + ��|� ∈ ℝ1, but does rotate the directed axis (¬ + ��|� ∈ ℝ1 to a new 

direction �′ = ��,k〈s〉���, and rotates the position vector ¬ to a new position ¬′ = ��,k〈s〉. Therefore, the second 

rotation becomes ��­,¬­〈{〉, yielding the body-fixed composite ��­,¬­〈{〉 ∘ ��,k〈s〉. The affine operators ��,k〈s〉, ��,¬〈{〉
 
and ��­,¬­〈{〉 may be expressed in terms of origin-fixed rotations.  Given an arbitrary vector ®: ��,k〈s〉�®� = ��⟨s⟩�® − k� + k. ��,¬〈{〉�®� = ��〈{〉�® − ¬� + ¬. ��­,¬­〈{〉�®� = ��­〈¯〉�® − ¬′� + ¬′. 

Substituting, expanding, and simplifying gives: ��­,¬­〈{〉 ∘ ��,k〈s〉�®� = �� 〈{〉U��,k〈s〉�®� − ¬′V + ¬′ = �� 〈{〉���〈s〉�® − k� + k − ¬′� + ¬′ = �� 〈{〉U��〈s〉�® − k� + k − ���〈s〉�¬ − k� + k�V + ��〈s〉�¬ − k� + k = �� 〈{〉U��⟨s⟩�® − ¬�V + ��〈s〉�¬ − k� + k = �� 〈{〉U��⟨s⟩�® − ¬�V + ��〈s〉�¬ − k� + k 
since �� 〈{〉 ∘ ��〈s〉 = ��〈s〉 ∘ ��〈{〉: = ��⟨s⟩ ∘ ��〈{〉�® − ¬� + ��〈s〉�¬ − k� + k = ��〈s〉U��〈{〉�® − ¬� + �¬ − k�V + k = ��〈s〉U���〈{〉�® − ¬� + ¬� − kV + k = ��〈s〉U��,¬〈{〉�®� − kV + k 

= ��,k〈s〉 t��,¬〈{〉�®�u = ��,k〈s〉 ∘ ��,¬〈{〉�®�. 
Hence the general result: ��­,¬­〈{〉 ∘ ��,k〈s〉 = ��,k〈s〉 ∘ ��,¬〈{〉. 
A.12 Rotation and change of basis equivalence 

Given an orthonormal frame E with basis x, y, z, a position-vector p is represented by the vector-coordinate ±��, ��, �²³ where the coordinate-components satisfy the equation . = ��� + ��� + �²². Since x, y, z is an 

orthonormal basis, the solution is unique and is given by the scalars: �� = . • �,  �� = . • �,  �² = . • ². Thus, 

for any position-vector p and orthonormal basis x, y, z: 

 . = ��� + ��� + �²² = �. • ��� + �. • ��� + �. • ²�². (A.12.1) 

The origin-fixed rotation operator ��〈s〉 applied to a position-vector p produces a rotated position-vector p′. The 

rotated position-vector p′ has vector-coordinates ±�\  , �_  , � ̀ ³ in frame E. The rotation operation ��〈s〉, where the 

rotation axis n has vector-coordinates ±,�, ,�, ,²³
 

in frame E, can be represented as a rotation matrix 

multiplication .  = ���〈s〉
.. The matrix form of ��〈s〉 is given by Rodrigues’ rotation formula (Equation 6.6): 

���〈s〉
 = ´ �1 − cos s�,�	 + cos s     �1 − cos s�,�,� − ,² sin s �1 − cos s�,�,² + ,� r+, s�1 − cos s�,�,� + ,² sin s �1 − cos s�,�	 + cos s     �1 − cos s�,�,² − ,� r+, s�1 − cos s�,²,� − ,� sin s �1 − cos s�,²,� + ,� sin s �1 − cos s�,²	 + cos s µ (A.12.2) 

The origin-fixed rotation operator ��〈s〉 may also be applied to each of the basis vectors of frame E, i.e.:  
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�  = ��〈s〉���,  �′ = ��〈s〉���,  ²  = ��〈s〉�²�. (A.12.3) 

Applying Equation A.12.2 to the basis vectors of the frame E yields the coordinate components of the rotated 

basis vectors with respect to frame E. 

 

�  = ���〈s〉
� 
= ´ �1 − cos s�,�	 + cos s     �1 − cos s�,�,� − ,² sin s �1 − cos s�,�,² + ,� sin s�1 − cos s�,�,� + ,² sin s �1 − cos s�,�	 + cos s     �1 − cos s�,�,² − ,� sin s�1 − cos s�,²,� − ,� sin s �1 − cos s�,²,� + ,� sin s �1 − cos s�,²	 + cos s     µ ¶100· 

�  = ¸ �1 − cos s�,�	 + cos s    �1 − cos s�,�,� + ,² sin s�1 − cos s�,²,� − ,� sin s¹ 

The rotated basis vector x′ is represented by the first column of the matrix ���〈s〉
.  Similarly, the rotated basis 

vectors y′ and z′ are represented by the second and third columns of the matrix ���〈s〉
, respectively. 

 

�  = ���〈s〉
� 
= ´ �1 − cos s�,�	 + cos s     �1 − cos s�,�,� − ,² sin s �1 − cos s�,�,² + ,� sin s�1 − cos s�,�,� + ,² sin s �1 − cos s�,�	 + cos s     �1 − cos s�,�,² − ,�sin�1 − cos s�,²,� − ,� sin s �1 − cos s�,²,� + ,� sin s �1 − cos s�,²	 + cos s     µ ¶010· 

�  = ¸�1 − cos s�,�,� − ,² sin s�1 − cos s�,�	 + cos s    �1 − cos s�,²,� + ,� sin s¹ 

 

²  = ���〈s〉
² 
= ´ �1 − cos s�,�	 + cos s     �1 − cos�,�,� − ,²sin �1 − cos s�,�,² + ,� sin s�1 − cos s�,�,� + ,² sin s �1 − cos s�,�	 + cos s     �1 − cos s�,�,² − ,� sin s�1 − cos s�,²,� − ,� sin s �1 − cos s�,²,� + ,� sin s �1 − cos s�,²	 + cos s     µ ¶001· 

²  = ¸�1 − cos s�,�,² + ,� sin s�1 − cos s�,�,² − ,� sin s�1 − cos s�,²	 + cos s     ¹ 

The original position-vector p and the rotated position-vector p′ each can be represented by vector-coordinates 

in terms of the original basis vectors x, y, z, and can also be represented by different vector-coordinates with 

respect to the rotated basis vectors x′, y′, z′. 
The original position-vector p has vector-coordinate ±��, ��, �²³ in terms of the original basis vectors x, y, z, and 

also has vector-coordinate ±��­ , ��­ , �²­³ in terms of the rotated basis vectors x′, y′, z′. 
Similarly, the rotated position-vector p′ has vector-coordinate ±�\  , �_  , � ̀ ³ in terms of the original basis vectors x, 

y, z, and also has vector-coordinate G��­  , ��­  , �²­  M in terms of the rotated basis vectors x′, y′, z′. 
Because p

 
is a position-vector, the sum of the products of each of its coordinate-components with the 

corresponding basis vectors is invariant. Thus:  
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. = ��� + ��� + �²² = ��­�  + ��­�  + �²­² . 
Similarly, because p′ is a position-vector: 

.  = �\  � + �_  � + � ̀ ² = ��­  �  + ��­  �  + �²­  ² . 
Given . = ��� + ��� + �²², then 

 

.′ = ��〈s〉�.� = ��〈s〉 t��� + ��� + �²²u = ����〈s〉��� + ����〈s〉��� + �²��〈s〉�²� = ���′ � ���′ � �²²′. 
(A.12.4) 

Thus, the coordinate-components of p′ with respect to the rotated basis vectors x′, y′, z′ have the same values 

as the coordinate-components of p with respect to the original basis vectors x, y, z. 

Using Equation A.12.1, and substituting the expression in Equation A.12.4 for p′, the vector-coordinate 

components of p′ are: 

 

��′ = .′ • � = U���′ + ���′ + �²²′V • � = ����′ • �� + ����′ • �� + �²�²′ • ��,  ��′ = .′ • � = U���′ + ���′ + �²²′V • � = ����′ • �� + ����′ • �� + �²�²′ • ��,  �Y′ = .′ • ² = U���′ + ���′ + �²²′V • ² = ����′ • ²� + ����′ • ²� + �²�²′ • ²�. 
The matrix form of these three equations is: 

 ⎣⎢
⎢⎡��′��′�Y′ ⎦⎥

⎥⎤ = ¸�′ • � �′ • � ²′ • ��′ • � �′ • � ²′ • ��′ • ² �′ • ² ²′ • ²¹ ¶�����²· (A.12.5) 

Let F denote the orthonormal frame with basis x′, y′, z′. As discussed in 6.4.3.3, frame F can be conceptually 

considered to have been rotated away from frame E by the rotation operator ��〈s〉. Thus, an alternate notation 

for the rotation operator ��〈s〉 can be given by �P→B. The dot product matrix in Equation A.12.5 is therefore a 

representation of the rotation operator ��〈s〉 with respect to orthonormal frame E expressed in terms of the 

relationships between the original basis vectors x, y, z and the rotated basis vectors x′, y′, z′. 
Thus, the rotation matrix ��P→B
 is identical to the change of basis matrix �ºP←B
 (see 6.2.2). 

��P→B
  = ¸�′ • � �′ • � ²′ • ��′ • � �′ • � ²′ • ��′ • ² �′ • ² ²′ • ²¹ = �ºP←B
 
Expanding each vector in the matrix �ºP←B
into its components (see Equation A.12.3), and then evaluating each 
of the dot products, yields the Rodriquez rotation matrix: 
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 �ºP←B
 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡¸ �1 " cos s�,�	 � cos s    �1 − cos s�,�,� + ,² sin s�1 − cos s�,²,� − ,� sin s¹ • ¶100· ¸�1 − cos s�,�,� − ,² sin s�1 − cos s�,�	 + cos s    �1 − cos s�,²,� + ,� sin s¹ • ¶100· ¸�1 − cos s�,�,² + ,� sin s�1 − cos s�,�,² − ,� sin s�1 − cos s�,²	 + cos s     ¹ • ¶100·
¸ �1 − cos s�,�	 + cos s    �1 − cos s�,�,� + ,² sin s�1 − cos s�,²,� − ,� sin s¹ • ¶010· ¸�1 − cos s�,�,� − ,² sin s�1 − cos s�,�	 + cos s    �1 − cos s�,²,� + ,� sin s¹ • ¶010· ¸�1 − cos s�,�,² + ,� sin s�1 − cos s�,�,² − ,� sin s�1 − cos s�,²	 + cos s     ¹ • ¶010·
¸ �1 − cos s�,�	 + cos s    �1 − cos s�,�,� + ,²sin�1 − cos s�,²,� − ,� sin s¹ • ¶001· ¸�1 − cos s�,�,� − ,² sin s�1 − cos s�,�	 + cos s    �1 − cos s�,²,� + ,� sin s¹ • ¶001· ¸�1 − cos s�,�,² + ,� sin s�1 − cos s�,�,² − ,� sin s�1 − cos s�,²	 + cos s     ¹ • ¶001·⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤
 

�ºP←B
 = ¸ �1 − cos s�,�2 + cos s     �1 − cos s�,�,� − ,² sin s �1 − cos s�,�,² + ,� sin s�1 − cos s�,�,� + ,² sin s �1 − cos s�,�2 + cos s     �1 − cos s�,�,² − ,� sin s�1 − cos s�,²,� − ,� sin s �1 − cos s�,²,� + ,� sin s �1 − cos s�,²2 + cos s     ¹ = ���〈s〉

 

Thus, the matrix representations of the rotation operator ��〈s〉 and the change of basis operator ºP←B are 

identical. The operators ��〈s〉 and ºP←B and their matrix representations can also be used to denote the 

orientation of the rotated frame F with respect to the original frame E. 
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