

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 2

•  GOAL
•  To provide a quick overview of the capabilities available in the DRM

•  WHERE TO FIND MORE INFORMATION
•  The DRM is specified in ISO/IEC 18023-1.
•  Information on details of the DRM can be found at: https://www.sedris.org/drm.htm
•  Detailed tutorials on the fundamentals of DRM, as well as specialized uses of DRM for terrain, ocean, atmosphere

and other representations are available at: https://www.sedris.org/tutorials.htm

•  WHAT TO EXPECT
•  Highlights of some of the key principles and concepts in DRM, which touches the relation to EDCS and SRM,

understand. Some specific sub-topics related to data organization, 3D geometry data, organizing and representing
tabular / grid data, and general data organization classes.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 3

•  Familiarity with common environmental data and some of the
techniques for modeling the environment.

•  Familiarity with the SEDRIS technology components and how
they fit together.

•  Familiar with object-oriented design techniques and UML
notation, such as has-a, is-a, relations, and cardinality.

•  Brackets < > surrounding a phrase convey a class name
Italic text inside brackets, or gray class box, indicates an abstract
class (a class not meant to be instanced, but serves as a template for classes of its kind)

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 4

•  Data Structures, Data Models, and Data Representation Model (DRM)
•  Categories of DRM Classes/Functionality
•  A Few Key Classes and Their Use in Data Representation

–  <Transmittal Root>
–  <Classification Data>, Attributes, EDCS
–  Basics of Representing Geometric Data and Primitives

•  <Polygon>, <Vertex>
–  Organizing Principles
–  Fundamentals of Tabular Representation

•  <Property Grid> related classes
•  Summary

–  Where to find more information
•  Refresher and Backup Material

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 5

•  A data structure is a specific arrangement of data elements and
types, usually created for a specific application or purpose, that
supports organizing, processing, retrieving, and storing the data.

•  Generally, a data model is the specific collection of data
structures and their relationships that specify a unique instance of
data for some concept or object.

•  However, multiple data models can be realized that describe the
same object or concept.

•  Problems in communication, interchange, and data processing
arise because:
–  Different data models often reflect different perspectives on what is

important about a concept
–  Software written to parse and process a specific data model's schema and

format will not be able to process another data model

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 6

•  Consider data model A, where a tree is represented using a data
structure, as follows:
–  height
–  species
–  stem diameter
–  location

•  Data model B may represent a tree using the following data
structure:
–  location
–  material properties of the trunk
–  stem radius
–  Height

* For simplicity, assume same data type for same data element is used in both cases

Tree_Rep
Height
Species
Stem_Diameter
Location

My_Tree
Tree_Location
Trunk_Material
Stem_Radius
Height

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 7

•  Software designed for data model A's data structure will not parse
the values communicated by B.

•  The semantic of "treeness" is built into the data structures of A and
B.

•  The semantic of what a field value means is specific to that data
structure.

•  If a decision is made to add more information about trees to either
data model (e.g. foliage density), that data model’s structures must
be modified, along with the structure and logic of the software
designed to process it.

•  If a new kind of object (buildings, for example) is desired, another
data model and data structures for that concept must be added,
since "treeness" is inherent in this set of data structures.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 8

•  Not practical to try to define data models for all possible types of
data and their attributes.

•  Need a different approach to design a model that can be applied
easily to the many different kinds of environmental data, while
still being general enough to be understood by many different
applications.

•  Key Principles
–  Separating the semantics of what something represents from the "data

primitives" used to represent it
–  Factoring out the common syntax and semantics of data models used to

represent similar things

•  Combining these two principles gives us the tools to create a
single schema to represent an endless variety of data models: the
SEDRIS Data Representation Model.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 9

•  The example described an object - a tree - that has a physical
location and a collection of attributes, where the attributes differ
depending on whether data model A or B is used to describe it.

•  Consider some DRM class that can specify

•  Instances of such a DRM class can be used to define many kinds
of objects.

“Some to be named Class”

Location Classification_Data Property_Value
*

•  a <Location> instance, specifying the location
of the "thing" in the environment

•  a <Classification Data> instance that uses
EDCS to specify what the object represents (in
this example, a tree)

•  multiple and various <Property Value>
instances, using EDCS, to specify properties of
the object and the values of those properties

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 10

•  A set of 306 classes, supporting a variety of different
representation schemes, and the data types used to specify
them

•  The formal relationships between classes

•  A set of constraints specifying requirements on instances of
classes

•  The classes fall into only a few broad categories when
considered generally in terms of the functionality they supply

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 11

•  Organizers and Containers
–  Examples: <Transmittal Root>, <Environment Root>, <Library>, <Feature

Hierarchy>, <Geometry Hierarchy>, <Time Related Features>

•  Primitives
–  Examples: <Polygon>, <Line>, <Point>, <Sound>, <Image>, <Areal

Feature>, <Linear Feature>, <Point Feature>

•  Metadata
–  Examples: <Description>, <Keywords>, <Identification>

•  Modifiers
–  Examples: <Classification Data>, <Property Value>, <Control Link>,

<Colour>, <Image Mapping Function>

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 12

•  Actual data sets contain objects - instances of DRM classes.

•  The formal relationships between classes specify what
relationships are allowed to exist between instances of those
classes and what those relationships mean.

•  The constraints further refine requirements for objects in specific
contexts.

•  A SEDRIS data or database is called a transmittal, and the objects
contained within it are organized as a tree in terms of aggregate /
component (whole vs. part) relationships between objects.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 13

•  Every transmittal (e.g., STF) contains exactly 1 instance of
<Transmittal Root> as the 'root object' of the transmittal — the
root of the object tree.

•  Every object in a transmittal is connected by a path of aggregate/
component relationships with the <Transmittal Root> of that
transmittal.

•  Consequently, a <Transmittal Root> serves as the ultimate
organizer of organizers for a transmittal.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 14

•  A <Transmittal Root> organizes:
–  <Environment Root> instances that represent some environment
–  <Library> instances that serve as repositories of representations of

environmental objects that tend to be shared and reused
–  metadata that applies to the entire transmittal

•  Any given <Transmittal Root> is required to supply some basic
metadata, but otherwise data providers are free to use only those
<Environment Root> and / or <Library> organizations that
express their particular environmental data sets.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 15

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 16

•  What classes are needed for a simple geometric representation
of an environment?

•  The classes covered in this section are
–  <Classification Data>
–  <Environment Root>
–  <Location>
–  <CD Location 3D>
–  <Polygon>
–  <Property Value>
–  <Spatial Extent>
–  <Union Of Primitive Geometry>
–  <Vertex>

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 17

•  All relationships in the DRM that need locations are specified
with the <Location> class or its abstract subclasses. All the SRM's
spatial reference frames are supported for all such relationships.

•  The requirement that a given <Location> shall be valid in the
spatial reference frame it appears in is specified as a constraint.

•  In this example, the spatial reference frame 3D celestiodetic is
used, which is show as: <CD Location 3D>.

Location 3D

CD Location 3D
...

Location

Location 2D

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 18

•  A <Classification Data> instance attached to some object X
specifies what the object tree rooted at X represents in the world -
it classifies X.

•  To do this, the tag field of a <Classification Data> instance
specifies an EDCS Classification Code.

•  <Classification Data> gives us the ability to represent many, many
different environmental concepts unambiguously using the same
type of transmittal organization.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 19

•  The label (such as BENCH) is just that: a label for a concept.
•  Don't confuse the label of an EDCS Classification Code with

either
–  the integer code value stored in a transmittal, or
–  the definition of the concept being represented

•  A transmittal actually stores the integer code corresponding to
an ECC, not its label string. In software, use of the mnemonic
constants provided with the EDCS implementation rather
than raw integer codes is MOST STRONGLY recommended.
–  Greater clarity of software documentation
–  Code values may change between releases until EDCS moves up to the

draft international standard level

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 20

•  A <Property Value> attached to some object X indicates the value
of a property of the hierarchy of objects rooted at X - it describes
an attribute of X.

•  The meaning of a <Property Value> is specified with an
SE_Property_Type - a "tagged union" data structure that may
represent one of two kinds of codes:
–  EDCS_Attribute_Code (the most commonly used).

–  SE_Variable_Code, which is used primarily by the <Control Link>
mechanism for specifying dynamic control, covered later.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 21

Property Value

Property Value

Transmittal Root

Environment Root

Spatial Extent Union Of Primitive Geometry

CD Location 3D

CD Location 3D

(metadata objects not shown)

Classification Data

Polygon

Vertex CD Location 3D

Vertex CD Location 3D

Vertex CD Location 3D
Instance Diagram

Property Value
meaning = { SE_PROP_CODE_TYP_ATTRIBUTE,
 { EAC_VEGETATION_TYPE }}
value = { EDCS_AVT_ENUMERANT_CODE,
 { EEC_VEGTY_GRASSLAND }}

Property Value
meaning = { SE_PROP_CODE_TYP_ATTRIBUTE,
 { EAC_SOIL_SURFACE_TEMPERATURE }}
value = { EDCS_AVT_REAL,
 { EUC_DEGREE_C, ESC_UNI,
 { EDCS_NVT_SINGLE_VALUE, { 12.75 }}}}

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 22

•  An EDCS Attribute Code specifies some particular property of X,
in contrast to an EDCS Classification Code, which indicates what
X is in the environment.
–  ECC_TERRAIN specifies that X represents TERRAIN, while

EAC_SOIL_SURFACE_TEMPERATURE specifies that a quantity
represents the SOIL_SURFACE_TEMPERATURE for X.

–  ECC_WIND specifies that X represents a wind, while
EAC_WIND_SPEED specifies that a quantity represents the wind speed for
X.

•  As with EDCS Classification Codes, don't confuse the label of an
EDCS Attribute Code with its semantic meaning; check the
definition.

•  An EDCS Attribute not only has a definition, but is bound to an
specific data type (real, integer, enumerated, Boolean, …); and
some attributes require units for their meaning

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 23

Property Value

Property Value

Transmittal Root

Environment Root

Spatial Extent Union Of Primitive Geometry

CD Location 3D

CD Location 3D

(metadata objects not shown)

Classification Data

Polygon

Vertex CD Location 3D

Vertex CD Location 3D

Vertex CD Location 3D Instance Diagram

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 24

•  An instance of the <Polygon> class is required to have 3 or more
vertices in counter-clockwise order, specifying a bounded portion
of a plane.

•  However, a <Polygon> may provide more information if desired.
•  In this terrain example, suppose one of the <Polygon>

components of the <Union Of Primitive Geometry> isn't just
terrain, but a tract of with trees

•  Can we classify that single <Polygon> instance as
ECC_TREED_TRACT while leaving the rest of the union as plain
ECC_TERRAIN?

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 25

•  An individual <Polygon> can specify its own <Classification
Data>, which can also be specified at the organization level by
<Union Of Primitive Geometry>.

•  A <Polygon> is said to inherit instances of certain classes from its
aggregate, provided it does not 'override' those inherited
components with components of its own. Some 'attribute'
components that can be inherited are:
–  <Classification Data> <Colour>
–  <Property Value> <Image Mapping Function>

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 26

•  A <Vertex> is required to specify a <Location>, and is used as a
component to create geometric primitives.

•  However, like <Polygon>, <Vertex> is very flexible and can
supply more than the minimum information if desired, such as
<Colour> and
<Texture Coordinate> instances.

•  As with <Polygon>, instances of the <Vertex> class can inherit
'attribute' components, provided they can be applied to a
<Vertex>. For example, a <Vertex>
–  Does inherit <Colour>
–  Does not inherit <Classification Data>

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 27

•  The principles shown for primitive geometric representation are the same basics
principles for other representations in DRM.

•  The focus was on <Polygon>, organized under the <Union Of Primitive Geometry>
class.

•  But there is a total of 13 Geometry-specific organizing principles in the DRM that can
organize instances of any of the subclasses of <Primitive Geometry>, including <Point>,
<Line>, <Ellipse>, and <Finite Element Mesh>, in addition to <Polygon> that is the
most commonly used.

•  Same concepts apply to Features (GIS primitives) with 10 specific organizing principles.
For details on organizing and using features refer to the Fundamentals of DRM tutorial.

•  Both Features and Geometry are supported by their respective Topology (2D and 3D)
primitives.

•  Similar concepts apply to tabular (grid) data (e.g., weather, ocean volume, …) .

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 28

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 29

•  Tabular Data used to capture properties and characteristics associated with an
environmental object. <Property Table> classes are used for these. They are
based on the <Data Table> class.

•  Grid data is specifically bound to locations/position. Similar to <Property
Table>, <Property Grid> related classes are used for these.

•  What classes are needed for a tabular, or gridded, representation of an
environment?

•  The classes introduced in this section are
–  <Property Grid Hook Point>
–  <Property Grid>
–  <Regular Axis>
–  <Irregular Axis>
–  <Table Property Description>
–  <Property>

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 30

•  A <Property Grid> instance specifies the values of one or more properties
for each cell of a grid, which covers some region.

Longitude

Hook Point

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 31

Transmittal Root

Environment Root

Property Grid Hook Point

CD Location 3D

Property Grid

Classification Data

(metadata objects)

Regular Axis

(<Spatial Extent>)

Table Property Description

Regular Axis

Irregular Axis
Property Value

Property Value

Instance Diagram

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 32

•  The geometric representation in this example is organized as a
<Property Grid Hook Point>, which "hooks" its <Property
Grid> components - each of which specifies its own spatial
reference frame - to the spatial reference frame of the
<Environment Root>.

•  Remember that if all higher-level organization semantics are
stripped away, all geometric organizations ultimately boil
down to combinations of
–  <Union Of Primitive Geometry> (already covered)
–  <Property Grid Hook Point>

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 33

Transmittal Root

Environment Root

Property Grid Hook Point

CD Location 3D

Property Grid

Classification Data

(metadata objects)

Regular Axis

(<Spatial Extent>)

Table Property Description

Regular Axis

Irregular Axis
Property Value

Property Value

Instance Diagram

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 34

•  A <Property Grid> instance specifies its own SRF primarily to
ensure that its "griddedness" is preserved if a consumer asks
the API to convert the "native" SRF of part of a transmittal to
another SRF.
–  During coordinate conversion/transformation between different spatial

reference frames, <Axis> gridlines could become distorted so that they
are no longer straight lines.

–  A <Property Grid> has its own SRF so that it stands apart from any
coordinate conversion operations requested by the user.

•  To connect its spatial reference frame to that of the <Property
Grid Hook Point>, a <Property Grid> instance specifies two
fields: spatial_axes_count and location_index.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 35

•  The spatial_axes_count field specifies how many entries in
location_index are significant.

•  The location_index field indicates which point in grid space -
some intersection of gridlines for the first (spatial_axes_count)
<Axis> components - corresponds to the <Property Grid Hook
Point>'s <Location>.

Longitude

Hook Point

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 36

Property Grid

Data Table Classification Data

Table Property Description Axis

what the <Property Grid> as a whole represents

*

*

1..* {ordered} 1..* {ordered} the properties for which values
are being stored in the grid's cells

the structure of the grid cells, including�
the number and arrangement of cells

the grid's spatial reference frame and the�
information needed for the "hook"

Detail, Class Diagram Sheet 6

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 37

•  A <Regular Axis> specifies an <Axis> defined for a numeric
attribute (specified by the axis_type), where the tick marks
specified are regularly spaced, starting at some specified first
value.

•  An <Irregular Axis> is also defined for a numeric attribute,
but the spacing of the tick marks is irregular, so the tick mark
values are supplied by an array rather than specifying tick
mark spacing.

•  Detailed treatment of <Axis> instances, are provided in the
Advanced Application of the DRM tutorials.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 38

•  What can be represented?
–  Axis Types: Any EDCS attribute type
–  Cell Content: Any EDCS attribute type

•  Arbitrary Dimensions (n-axes)
•  Other capabilities

–  <Data Table> Reference Class
•  Allows entry into given row of table
•  Support for “physics based” modeling

–  Data Table in Library
•  Promotes re-use of tables

–  Supported by Metadata information

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 39

•  <Data Table> has another subclass, <Property Table>, which
provides much the same functionality as <Property Grid>, but for
which none of the <Axis> components are spatial. While
<Property Table> does not correspond to a representation of a
spatial object, it can be used to represent other tabular
information, such as material properties.

•  The cell data of a <Data Table> instance is not part of the fields of
the <Data Table>, but is an associated block of data accessed via
the SEDRIS API, organized according to the layout specified by
the <Axis> and <Table Property Description> components of that
<Data Table>.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 40

•  The higher level organizing principles for feature and
geometric representation provide powerful mechanisms for
expressing various kinds of semantic information.

•  These organizing principles correspond to the subclasses of
<Aggregate Feature>, for feature representation, and
<Aggregate Geometry>, for geometric representation.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 41

•  Union
•  Alternate Hierarchy
•  Spatial Index
•  Quadrant
•  Octant
•  Perimeter
•  Classification
•  Level Of Detail
•  Separating Plane (geometry only)
•  Animation (geometry only)
•  Time
•  State

•  Unless otherwise noted, all these
organizing principles have at least
2 corresponding organizer classes,
one for feature representations,
the other for geometry.

•  Three of them - union, spatial
index, and perimeter - can also be
applied to topological
organizations.

•  To understand a given principle
for any one case - whether
geometry, features, or topology -
is to understand it for all cases.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 42

•  All geometric representation ultimately consists of organizations
of <Union Of Primitive Geometry> and <Property Grid Hook
Point> instances.

•  All feature representation ultimately consists of organizations of
<Union Of Features>.

•  No matter how many and what kinds of extra levels of geometric
or feature organization are present in a transmittal, they eventually
boil down to organizing chunks of data in one of these
representations.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 43

•  If interested in DRM details, review the DRM dictionary and HTML
pages, along with the DRM class diagrams.

•  Develop instance diagrams using the basic techniques discussed here and
based on specific application topics of interest to you.

•  Review the “Advanced Application of the DRM” tutorial, if you are
interested in learning how to apply the DRM to solve more detailed
environmental data problems (ocean, terrain, weather, and other data).

•  Review the “Advanced Use of the SEDRIS SDK” tutorial, if you are
interested in working with software to use, store, or manipulate DRM data.

•  Review the “How to Produce and Consume Transmittals” tutorial, if you
are interested in producing or consuming DRM data.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 44

Refresher and Backup Slides

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 45

(x, y, z)

•  Coordinates are pairs (2D) or
triples (3D) of real numbers that
designate the position of a point in
a coordinate system.

•  A coordinate system is a set of
rules by which a coordinate can
spatially relate a location to a
unique coordinate system origin
and associated axes.

•  A spatial reference frame ties a
coordinate system's origin to some
Object Reference Model, such as a
model of the Earth, so that it is no
longer arbitrary but tied to the
real world.

(x, y, z)

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 46

•  Coordinates are specified as <Location> instances or as
coordinates within gridded data.

•  Coordinates appear only in an object subtree rooted at an
instance of some class that specifies a spatial reference frame,
and must be defined in that spatial reference frame. For
example,
–  Celestiodetic coordinates appear only in celestiodetic SRFs
–  3D coordinates appear only in 3D SRFs

•  <Environment Root> is one of the 5 classes of objects that
specify spatial reference frames.

•  Each such class has an srf_info field, defined using the
SRM_SRF_Info structured type.

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 47

•  The has-a relationship relates two classes (or in a
specific instance, two objects) in the roles of aggregate
(the greater whole) and component (a part). The
diamond, rather than drawing order, indicates which
participant in a relationship is in the aggregate role.

•  The DRM specifies which classes can participate in
what relationships and playing what roles.

(aggregate)

(component)

(aggregate) (component)

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 48

•  An is-a relationship between 2 classes indicates that one is a
subclass of the other - that any object belonging to the
subclass is also a member of the superclass. The triangle,
rather than drawing order, indicates which is the superclass.

•  All superclasses in the DRM are abstract - they exist only to
abstract common characteristics of their subclasses. They are
shaded on class diagrams.

•  Only concrete classes may have actual objects, so only concrete
instances appear in instance diagrams.

(superclass)

(subclass)

Location 3D

CD Location 3D
...

Copyright © 2019 SEDRIS™ Overview of DRM Capabilities 26 Aug 2019 49

•  The multiplicity of a class relationship indicates, for an instance of either
class, how many instances of the other class it may be related to.

–  A range is specified as [lower limit]..[upper limit], where an asterisk for the
upper limit indicates that there is no upper limit.

–  An asterisk by itself means "zero or more".
–  For an exact number (lower_limit = upper_limit), the number is given.

•  When more than one component may be present and the order of the
component instances carries semantic information, the component end of
the class relationship is marked with {ordered}.

(aggregate)

(component)

lower_limit_a .. upper_limit_a

lower_limit_b .. upper_limit_b

