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10 Spatial operations

10.1 Introduction

This International Standard specifies operations on SRF coordinates and, in the case of 3D object-spaces, on SRF spatial directions. Underlying these operations is the normal embedding transformation associated with two ORMs. This is treated first in 10.3. Then the case of changing positional data from one SRF to another is specified in 10.4, followed by important special cases. The specification of a spatial direction in the context of an SRF is defined, and the general case of changing a SRF spatial direction to another SRF is specified (10.5), followed by important special cases.

The case of instancing an abstract model into an object-space is treated in 10.6 as a specialization of the operations specified in 10.4.2.

Euclidean distance in 2D and 3D object-space is specified in 10.7. Distance and azimuth on the surface of an oblate ellipsoid (or sphere) is specified in 10.8. Spatial operations related to map projection geometry, convergence of the meridian, and point scale are specified in 10.9.  Vertical offset is defined in 9.2.3.
10.2 Notation and terminology 

An important category of spatial operations is changing spatial information represented in one SRF to spatial information represented in a second SRF. For this category of operations, the adjective “source” shall be used to refer to the first SRF, and the adjective “target” shall be used to refer to the second SRF.

The notation in Table 10.1 is used in this clause.

Table 10.1 — Notation

	Notation
	Description

	ORMS
	Source 3D ORM realization.

	ORMT
	Target 3D ORM realization.

	ORMR
	Reference 3D ORM for a given spatial object.

	H​SR
	Reference transformation from ORMS to the reference ORMR.

	H​TR
	Reference transformation from ORMT to the reference ORMR.

	H​ST
	Transformation from the embedding of ORMS to ORMT.

	SRFS
	Source SRF based on ORMS.

	SRFT
	Target SRF based on ORMT.

	CSS
	CS of SRFS.

	CST
	CS of SRF​T.
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	Generating function of CSS.
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	Inverse generating function of CST.
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	Coordinate of a spatial position in SRFS.
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	Coordinate of a spatial position in SRFT.
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	Direction in SRFS.
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	Direction in SRFT.


10.3 Operations on ORMs

10.3.1 Object-fixed 3D ORMs for a single object

The seven-parameter reference transformation XE "seven-parameter reference transformation"  H​SR from ORMS to ORMR (see 7.3.3) is given by Equation (10.1), as specified in Equation (7.5). The transformation, as a vector operation, is in the form of a (scaled) matrix multiplication followed by a vector addition. This form of vector operation is an affine transformation.
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where:
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NOTE 1
The processes by which ORMs for the Earth are established are all based on physical measurements. These measurements are subject to error and therefore introduce various types of relative distortion between ORMs. Equation (10.1) is based on the assumption that coordinates in ORMS are error free and the equation includes no compensation for these distortions. 

The seven-parameter reference transformation H​TR from ORMT to ORMR is similarly defined. An important operation is the transformation HST from ORMS to ORMT, when neither the source nor the target is necessarily the reference ORM. The HST transformation may be expressed as the composition of H​SR with 
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 (the inverse of HTR) as in Equation (10.3) (see Figure 10.1).
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[image: image11]
Figure 10.1 — Composed transformations

The inverse operation 
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 is also an affine transformation as shown in Equation (10.4):
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Because the matrix 
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 is unitary, its transpose 
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 is also its inverse
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. Its inverse is also the matrix 
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 corresponding to the reverse rotations of ORMT with respect to ORMR. In particular:
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and
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The composite operation 
[image: image20.wmf]1

STTRSR

-

=

HHH

o

 reduces to:
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where:
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Note that rotation matrix 
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 may be determined directly from specification rotations for ORMS and ORMT using Equation (10.2) as follows:
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 If the rotation parameters are equal,
[image: image25.wmf]ST
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 is the identity matrix, and if
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, HST simplifies to a translation of the origin as shown in Equation (10.10).
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NOTE 2
If the differences in Equation (10.9) between the specified rotation parameters ORMS and ORMT are sufficiently small, the Bursa-Wolfe equation (see Annex B) approximates Equation (10.8).
10.3.2 Object fixed 2D ORMs for a single object

In the 2D case, a reference transformation XE "reference transformation 2D case"  H​SR, from an ORMS to ORMR may be specified by four parameters as defined in 7.3.4. Equation (10.3) and Figure 10.1 also apply to the 2D case.

10.3.3 Dynamic ORMs for a single object

If the source ORMS is a time-dependent ORM for a spatial object, ORMS(t) shall denote the ORMS at time t, and 
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 shall denote the transformation from the embedding of ORMS(t) to the embedding of the object fixed reference ORMR. If the transformation 
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 can be determined, it is a time-dependent affine transformation. If ORMT is object-fixed, the transformation between the source and target ORMs 
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If both ORMS and ORMT are dynamic and if 
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 is defined for t in the same temporal coordinate system, then 
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EXAMPLE
ORMS(t) is the ORM EARTH_INERTIAL_J2000r0 ERM at time t. ORM​R is the Earth reference ORM WGS_1984. Because ORMS(t) and ORMR share the same embedding origin, the 
[image: image37.wmf](
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 transformation is a (rotation) matrix multiplication operation (without vector addition). The matrix coefficients for selected values of t account for polar motion, Earth rotation, nutation, and precession. Predicted values for these coefficients are computed and updated weekly by the International Earth Rotation Service (IERS) [IERS] (see 7.5.3). See Annex B for other examples of dynamic ORM reference transformations.
10.3.4 Relating ORMs for different objects

If a spatial object S exists in the space of another spatial object R, and if ORMR is the reference ORM for object R, and if the two objects are fixed with respect to each other, then HSR shall denote a reference transformation from the embedding of ORMS to the embedding of ORMR. HSR is an affine transformation. If ORMT is an object-fixed ORM for the object R then HST is given by Equation (10.3).

If the spatial objects S and R are not fixed with respect to each other, then 
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 shall denote the transformation from the embedding of ORMS to ORMR at a given time t in a specified temporal coordinate system. If ORMT is an object-fixed ORM for the object R then 
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 is given by Equation (10.11). If ORMT is an object-dynamic ORM for the object R then 
[image: image40.wmf](
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 is given by Equation (10.12).

EXAMPLE
ORMS is an ORM for the space shuttle (as a spatial object). ORM​R is the Earth reference ORM WGS_1984. When in orbit at time t, 
[image: image41.wmf](
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transforms positions with respect to ORMS to positions with respect to ORM WGS_1984.

The case of an abstract object S and a physical object R is treated in 10.6.

10.4 Operations to change spatial coordinates between SRFs

10.4.1 Introduction

The general case of changing the spatial coordinate of a position from SRFS to SRFT​ is presented in formulations in 10.4.2 and 10.4.3 for time-independent (static) and time-dependent ORM relationships respectively. In the general case, both of the ORMs, ORMS and ORMT, and the coordinate systems, CSS and CST, may differ. The formulation simplifies in the special case for which ORMS = ORMT
 or, more generally, in the case for which the associated normal embeddings match. This case is presented in 10.4.4. In a further specialization of the ORMS = ORMT case it is assumed that CSS and CST are geodetic and/or map projection CSs. These assumptions produce further simplifications (see 10.4.5).

The case for which CSS = CST and ORMS and ORMT differ
 does not generally produce a computational simplification of the general case. However, when both the source and target SRFs are assumed to be LTSE, a simplification is produced and is presented in 10.4.6. This case is important for change of direction operations (10.5.3). 
10.4.2 Change coordinate SRF operation

SRFS and SRFT are two object-fixed SRFs for a spatial object and p is a point in object-space that is in the coordinate system domains for both SRFs. 
[image: image42.wmf]S
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denotes the coordinate of p in SRFS, and 
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 denotes the coordinate of p in SRFT. The determination of 
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 as a function of 
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 is an operation on the SRF pair (SRFS, SRFT). The most general form of the operation is:
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where:
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See Figure 10.2.  CS generating and inverse generation functions are specified in Clause 5.

[image: image48]
Figure 10.2 — Change coordinate SRF operation

Equation (10.13) is known as the Helmert Transformation XE "Helmert Transformation"  when HST is approximated with the Bursa-Wolfe equation (see Annex B).

EXAMPLE
If SRFS and SRFT are two celestiodetic SRFs for the same spatial object with different ellipsoids, Equation (10.13) transforms the coordinate 
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 with respect to one oblate ellipsoid to 
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 with respect to the other oblate ellipsoid.

NOTE
A transformation between two celestiodetic SRFs for the spatial object Earth is known as a horizontal datum shift XE "horizontal datum shift" . A number of numerical approximations developed to implement this operation have been published. When ORMT is the Earth reference ORM WGS_1984, a widely used approximation
 to directly transform 
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, is the standard Molodensky transformation XE "standard Molodensky transformation"  formula [83502T] as follows:
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where:
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The quantities 
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 are defined in Table 5.6. The standard Molodensky transformation is based on the assumption of zero rotations and no scale differences (
[image: image56.wmf]123

0 and 0

s

www

===D=

).

Equation (10.13) may not be defined for all values of
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is only defined for 
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SRFT may optionally specify a valid-region 
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 and may optionally specify an extended-valid region 
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 (see 8.3.2.4). If 
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where:
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10.4.3 The time-dependent case

When the SRFs are not both object-fixed and/or are SRFs for different spatial objects and 
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 is the time-dependent embedding transformation, Equation (10.13) may be generalized to:
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NOTE
Examples of time-dependent reference transformations are presented in Annex B.

10.4.4 The matched normal embeddings case

When the corresponding parameters of the seven-parameter reference transformations of ORMS and ORMT match, 
[image: image79.wmf]SR
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is the identity operation. Consequently, Equation (10.13) simplifies to:
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EXAMPLE 1
If SRFS is a(n induced) surface celestiodetic SRF (see 8.4) and SRFT is the 3D celestiodetic SRF for the same ORM (ORMS = ORMT), Equation (10.20) changes 
[image: image81.wmf](
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 from a coordinate of CS type surface to 
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 a coordinate of CS type 3D. 

The promotion operation XE "promotion operation"  converts a surface geodetic coordinate 
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 in a celestiodetic SRF (or a surface planetodetic SRF, or a map projection SRF; see 8.4), to a geodetic 3D coordinate in the celestiodetic SRF (respectively, the corresponding planetodetic 3D SRF, or the corresponding augmented map projection SRF) for the same ORM, by setting the 1st- and 2nd-coordinate components of 
[image: image84.wmf]T
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 to the 1st- and 2nd-coordinate components of 
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 and setting the 3rd-coordinate component, ellipsoidal height, to 0. Coordinate promotion is a special case of Equation (10.20).

EXAMPLE 2
Reversing the roles of source and target SRFs in 10.4.4 Example 1, if SRFS is a celestiodetic 3D SRF and SRFT is the (induced) surface celestiodetic SRF for the same ORM, Equation (10.20) is not defined for
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. Equivalently, only coordinates of the form 
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 belong to the set in Equation (10.16). Coordinates in SRFS that are not on the oblate ellipsoid (or sphere) RD instance surface, can be projected to the surface along a coordinate curve by setting
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The truncation operation XE "truncation operation"  converts a geodetic 3D coordinate 
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 in a celestiodetic SRF (or a planetodetic 3D SRF, or an augmented map projection SRF), to a surface geodetic coordinate (respectively, the corresponding surface planetodetic SRF, or the corresponding a map projection SRF; see 8.4) for the same ORM, by setting the 1st- and 2nd-coordinate components of 
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 to the 1st- and 2nd-coordinate components of
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. The point in object-space corresponding to 
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 and the point in object-space corresponding to 
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 are not the same point unless
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. Truncation, therefore, does not generally preserve location.

10.4.5 Map projection SRF and celestiodetic SRF with matched normal embeddings case

The CS generating function GMP for a map projection SRF (or, respectively, an augmented map projection SRF) is implicitly defined (see 5.8.2 or, respectively, 5.8.6) by the composition of the generating function for the surface geodetic CS (respectively, the geodetic 3D CS) GGD with the inverse mapping equations 
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If SRFS and SRFT are map projection SRFs for the same object, and the corresponding seven parameters of their reference transformations match, then Equation (10.20) becomes:
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for:
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Furthermore, if ORMS = ORMT, then 
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 and Equation (10.21) simplifies to:
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NOTE
If SRFS is a map projection SRF, and SRFT is the corresponding augmented map projection SRF based on the same ORM, then Equation (10.23) is equivalent to the promotion operation (see 10.4.4).

If SRFT is a celestiodetic SRF and ORMT = ORMS, Equation (10.22) simplifies to:
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Similarly, if SRFS is a celestiodetic SRF and ORMT = ORMS, Equation (10.22) simplifies to:
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10.4.6 LTSE SRF to LTSE SRF cases

SRFS and SRFT are two local tangent space Euclidean (LTSE) SRFs (see Table 8.10). The SRF pair operation on 
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 is determined by substituting the lococentric Euclidean 3D CS (see Table 5.9) generating function 
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 are the CS binding parameters for the LTSE SRF, Equation (10.26) expresses 
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where:
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The inverse generating function is expressed as:
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If vectors 
[image: image113.wmf]SSSTTT
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 are the CS binding parameters for SRFS and SRFT respectively (see Table 8.10), Equation (10.13) specializes to:
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In the case that the corresponding seven parameters of the reference transformations of ORMS and ORMT match, Equation (10.20) specializes to Equation (10.30):
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where:
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10.5 Operations to change spatial directions between SRFs

10.5.1 Canonical local tangent space Euclidean (CLTSE) SRF

Given an oblate ellipsoid (or sphere) ORM, a LTSE
 SRF instance may be defined at a point p in object-space. A unique SRF, called the canonical local tangent space Euclidean XE "canonical local tangent space Euclidean"  (CLTSE) SRF, for p with respect to the ORM is defined by setting the SRFT parameters as follows:

Let 
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 be the coordinate of p in the celestiodetic SRF based on that ORM. Then the LTSE
 SRFT parameter values for this SRFT realization are 
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The y-axis of the CLTSE points in the direction of the tangent vector of the meridian at 
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 and the z-axis of the CLTSE points in the direction of the surface normal at
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.

10.5.2 General specification of directions

In 3D position-space, a direction XE "direction"  is unambiguously specified by a normalized vector. The direction specified is translation independent. This is illustrated by lines through points in a given direction n (see A.6 Example 5). All such lines are parallel. This translation invariance carries over to the coordinate-space of a linear CS, but not to other CSs with vector space structure. For example, an augmented map projection inherits the vector space structure of 3D Euclidean coordinate-space, but the “up pointing” vector n = (0, 0, 1) points in different spatial directions (in position-space) depending on the map coordinate location from which n is viewed. 


[image: image122]
Figure 10.3 — Coordinate-space and position-space directions compared

In Figure 10.3, distinct position points p and q on the ellipsoid surface are projected to augmented map coordinates (s, t, 0) and (u, v, 0). Starting at these map coordinates, the coordinates one unit away in direction n are (s, t, 1) and (u, v, 1) respectively. In an (ellipsoidal height) augmented map projection, these coordinates correspond to the position-space points p’ and q’. The direction from p’ to p is not the same as the direction from q’ to q. It is noted in 5.8.6.2 that augmented map projections are not vertically conformal, therefore angular relationships of spatial directions are generally not preserved by augmented map projections. 

A linear CS will not preserve angular relationships between directions unless the CS is also orthonormal. A curvilinear CS does not have a spatially linear vector space structure so there is no natural way to specify a direction with curvilinear coordinates. 

In an SRF based on an orthonormal CS, such as a celestiocentric SRF or a LTSE
 SRF, a direction is specified by a normalized vector. In this International Standard, the direction vector must be associated with a reference position to support change SRF operations to other (non-orthonormal) SRFs.

A uniform specification for directions in an SRF requires both:

a. a reference position c for the direction, and

b. a normal vector v in an orthonormal CS.

The definition falls into three cases.

Case one: If the SRF is based on an orthonormal CS then the reference position is 
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 and v is a normal vector in the SRF. The SRFTs included are: celestiocentric, local space rectangular_3D, and LTSE
.
Case two: If the SRF is based on an oblate ellipsoid (or sphere) ORM and the CS is not orthonormal then v is a normal vector in the CLTSE for the reference position c with respect to the ORM. If the SRF is based on the local tangent space azimuthal spherical SRFT or local tangent space cylindrical SRFT then c shall be the tangent point. The SRFTs included are: celestiodetic, planetodetic, and all of the map projection SRFTs.

Case three: If the SRF is not based on an oblate ellipsoid (or sphere) ORM and is not based on an orthonormal CS then the reference position is 
[image: image124.wmf](
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 and v is a normal vector in the celestiocentric SRF based on the ORM. The SRFTs included are:  equatorial inertial, solar ecliptic, and solar equatorial.
10.5.3 Changing the representation of directions

There are four cases of changing a direction vector 
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 referenced to position 
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 in SRFS to its corresponding representation 
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 referenced to coordinate position 
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 in SRFT when SRFS and SRFT are two object fixed LTSE
 and/or celestiocentric SRFs for the same object. 

In the first case, the source and target SRFs are both celestiocentric. In this case 
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 and 
[image: image130.wmf]T

G

 are both the identity operator (see Table 5.8). Equation (10.13) becomes:
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The direction vector 
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 is given by:
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In the second case, the source SRF is LTSE
 and the target is celestiocentric. In this case 
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 and 
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 is the identity operator. In the notation of Equation (10.26), Equation (10.13) becomes:
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If 
[image: image137.wmf](
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is the LTSE
 origin, Equation (10.34) becomes:
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The direction vector 
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 is given by:
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The third case reverses the SRF types of the second case. The source SRF is a celestiocentric and the target SRF is LTSE
. In this case:
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The direction vector 
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 is given by:
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In the fourth case, both source and target SRFs are a LTSE
:
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The direction vector 
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v

 is given by:

	
	
[image: image146.wmf](

)

(

)

SR

TTSTSS

TR

1

1

s

s

+D

=

+D

vRTRv

T



	 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10.40)



In all four cases, the unit length of the direction vector is preserved if
[image: image147.wmf]ST
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. If not, the resultant 
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 shall be normalized. 

If ORMS = ORMT or, more generally, if the seven corresponding parameters of the reference transformations match, then
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is equal to the identity matrix. Consequently, in this case these terms do not appear in the Equation (10.32) through Equation (10.40).
In the case of celestiodetic, planetodetic, local tangent space azimuthal spherical, local tangent space cylindrical and map projection SRFs, the direction vector v is a vector in a CLTSE associated to the reference position
[image: image150.wmf]c

. No conversion is needed between these SRFs if they are based on the same ORM. Conversion to or from celestiocentric is covered by the second or third case above because CLTSE is a special case of LTSE
.

10.6 Instancing abstract space positions and directions in the space of another object

Engineering designs and other abstract models are often intended for realization in the physical world. 

EXAMPLE
A building plan is designed in the source SRFS, an abstract space local space rectangular_3D SRF. A terrestrial site survey establishes the origin of the target SRTT, a LTSE
 SRF. Source coordinates are identified to target coordinates by: 
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is a scale factor.

More generally, abstract models are rotated or otherwise transformed by a unitary operator before a source coordinate is identified to a target coordinate. This identification realizes an instance of an abstract space position (or direction) in physical object space.
This change in representation of a coordinate
[image: image153.wmf]S

c

 in SRFS, an abstract space local space rectangular_3D SRF, to a coordinate 
[image: image154.wmf]T
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in SRFT, a physical world LTSE
 SRF, is a special case of Equation (10.13) for which 
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relates ORMs for different objects (the abstract object and the real world object) as in 10.3.4.

If SRFT is an LTSE
 3D SRF with CS parameters
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Where the matrix 
[image: image159.wmf]R

is defined in Equation (10.27) from
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is an invertible matrix that scales and/or rotates abstract space coordinates. In that case, 
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is the identity operator and Equation (10.13) becomes:
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NOTE
Equation (10.42) illustrates that digital graphic composite pattern modelling techniques such as SceneGraph trees that use scale and rotation matrices W together with translation operations at each tree node are special cases of Equation (10.13).

Similarly, if 
[image: image164.wmf]S

v

is an SRFS direction, the corresponding SRFT direction is:
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10.7 Euclidean distance

For a 2D (or respectively, a 3D) position-space the Euclidean distance XE "Euclidean distance in position-space"  d between two points p1 = (x1, y1) and p2 = (x2, y2) (respectively, p1 = (x1, y1, z1) and p2 = (x2, y2, z2)) is given by the Euclidean metric:
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If c1 and c2 are two coordinates in an SRF, and if G is the generating function of the CS of the SRT, the Euclidean distance XE "Euclidean distance coordinate expression"  d between the corresponding points in object-space is given by:
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10.8 Geodesic distance and azimuth on an oblate ellipsoid

10.8.1 Geodesic distance

The general case of a geodesic is defined in A.7.3. For an oblate ellipsoid, a geodesic does not, in general, lie completely in any single plane [RAPP1] [RAPP2]. If ((1, (1) and ((2, (2) are the surface geodetic coordinates of two points lying on an oblate ellipsoid, the geodesic distance XE "geodesic distance" , l, between the points [PEAR] is given by:
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NOTE
This is an elliptic integral and the development of approximation equations for l has been the subject of much research. There are approximation formulas for the short distance case where l ≤ 200 km, for the medium distance case where l ≤ 1000 km and for the long lines case where the points are antipodal or near antipodal. Two points on the oblate ellipsoid are exactly antipodal when |((2 - (1)| = ( and (1 = -(2. There are also special cases when the two points are both on the equator of the oblate ellipsoid. A thorough exposition of geodesic distance approximations is given in [RAPP1] [RAPP2].

10.8.2 Geodetic azimuth

Geodetic azimuth is defined in 5.8.3.4. On a sphere, a geodesic between two points is an arc of a great circle and the problem of computing the angles of a spherical triangle can be solved in closed form. In the general case of an oblate ellipsoid, the problem of computing the angles of an elliptical triangle does not have a closed solution. Several different approximations are commonly used.

NOTE
Some algorithms are designed to compute both the geodesic distance and the azimuths associated with two points. 

10.9 Map projection geometry functions

10.9.1 Introduction

Map projection geometry is determined by the mapping equations of the abstract CS and is not dependent on the normal embedding associated with an SRF. Therefore, map projection geometry functions are specified in terms of the map projection CS and not in terms of the map projection SRF. 

The COM and point scale functions, ( and k respectively, are specified for each map projection CS. In the case of the non-conformal map projections, k is the scale factor along the parallel at the point. In the non-conformal case, the scale factor, j, along the meridian at the point is also specified. These specifications are presented in Table 10.3 though Table 10.8. The specification fields of those tables are defined in Table 10.2 
COM is defined in 5.8.3.5. In principle, this value may be computed as the arctangent of the slope of the meridian line at the point. For some map projections, the mapping equations are not readily available in closed form and approximate numerical formulations are employed. These formulations of COM vary according to the particular map projection CS and may be specified as a function of either the map coordinate, or the surface geodetic coordinate or both. In the case of a map projection CS which is classified as cylindrical, ( = 0 because the projections of meridians are parallel to the v-axis (see 5.8.4). In the case of a map projection CS which is classified as conic, ( depends on ( only because the projections of meridians are straight line segments with an angle depending only on the longitude (see 5.8.4).

Scale factors k and j are defined in 5.8.3.3. The value of k(p) at a point p is computed as the directional derivative of the generating projection in the direction of the parallel at the point, or any direction at the point if the map projection CS is conformal. The value of j at a point is computed as the directional derivative of the generating projection in the direction of the meridian at the point. 
Table 10.2 – Map projection functions specification fields

	Field
	Specification

	Map projection CS
	The label of the CS.

	COM
	Equation(s) for ( in radians.

	Point scale or 
scale factors
	Point scale k equation(s) if conformal or
scale factors k and j equations if non-conformal.

	Symbol(s) reference 
	CS specification table reference which specified the symbols which may be used in the expression of the equations or “None”.

	Notes
	Additional, non-normative information concerning the equations.


10.9.2 Mercator map projection

Table 10.3 – Mercator CS functions

	Field
	Specification

	Map projection CS
	MP_MERCATOR

	COM
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Simplification in the case of a sphere:
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	Symbol(s) reference 
	Table 5.18

	Notes
	Mercator is classified as a cylindrical projection.


10.9.3 Oblique Mercator Spherical map projection

Table 10.4 – Oblique Mercator spherical CS functions

	Field
	Specification

	Map projection CS
	MP_OBLIQUE_MERCATOR_SPHERICAL

	COM
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	Point scale or 
scale factors
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	Symbol(s) reference 
	Table 5.19

	Notes
	None.


10.9.4 Transverse Mercator map projection

Table 10.5 – Transverse Mercator CS functions

	Field
	Specification

	Map projection CS
	MP_TRANSVERSE_MERCATOR

	COM
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	Point scale or 
scale factors
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Simplification in the case of a sphere:
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	Symbol(s) reference 
	Table 5.20

	Notes
	Approximate numerical formulation given in [THOM].


10.9.5 Lambert conformal conic map projection
Table 10.6 – Lambert conformal conic CS functions

	Field
	Specification

	Map projection CS
	MP_LAMBERT_CONFORMAL_CONIC

	COM
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	Symbol(s) reference 
	Table 5.21

	Notes
	Lambert conformal conic is classified as a conic projection.


10.9.6 Polar stereographic map projection

Table 10.7 – Polar stereographic CS functions

	Field
	Specification

	Map projection CS
	MP_POLAR_STEREOGRAPHIC

	COM
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	Symbol(s) reference 
	Table 5.12

	Notes
	Polar stereographic is classified as a conic projection.


10.9.7 Equidistant cylindrical map projection
Table 10.8 – Equidistant cylindrical CS functions

	Field
	Specification

	Map projection CS
	MP_EQUIDISTANT_CYLINDRICAL

	COM
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	Symbol(s) reference 
	Table 5.23

	Notes
	Equidistant cylindrical is non-conformal and is classified as a cylindrical projection.


EDITORS NOTE: This is a temporary table of index entries that is used to create the master index. It will eventually be removed:
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reference transformation 2D case
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seven-parameter reference transformation
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standard Molodensky transformation
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truncation operation
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� � HYPERLINK "ISO_IEC_18026_Y_(E).doc" \l "I19111" ��ISO 19111� defines this case as a coordinate conversion. 


� � HYPERLINK "ISO_IEC_18026_Y_(E).doc" \l "I19111" ��ISO 19111� defines this case as a coordinate transformation.


� Historically it was thought that these approximations would require less computation than direct conversion. The perceived computational advantage has been overcome by technology advances. New efficient algorithms for converting celestiocentric coordinates to celestiodetic coordinates have been developed that result in appreciably faster transformations without the attendant loss of accuracy.
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