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Annex A
(normative)

Mathematical foundations

Introduction

This annex identifies the concepts from mathematics assumed by this International Standard and specifies the notation used for those concepts.  No proofs are presented. A reader of this International Standard is assumed to be familiar with mathematics including set theory, linear algebra, and the calculus of several real variables as presented in reference works such as the Encyclopedic Dictionary of Mathematics [EDM].

Rn as a real vector space

An ordered set of n real numbers a where n is a natural number is called an n-tuple of real numbers XE "n-tuple of real numbers" and shall be denoted by a = (a1, a2, a3, …, an). The set of all n-tuples of real numbers is denoted by Rn.  Rn is an n-dimensional vector space.

The canonical basis XE "canonical basis "  for Rn is defined as:
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The elements of Rn may be called points XE "point" or vectors XE "vector" . The latter term is used in the context of directions or vector space operations.

The zero vector (0, 0, …, 0) is denoted by 0.

Definitions A.2(a) through A.2(j) apply to any vectors
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 in Rn:

a. The inner product XE "inner product"  or dot-product XE "dot product"  of two vectors x and y is defined as:
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b. Two vectors x and y are called orthogonal XE "orthogonal"  if 
[image: image7.wmf]x•y

= 0. 

c. If n ( 2, two vectors x and y are called perpendicular XE "perpendicular"  if and only if they are orthogonal.

NOTE 2     If n ( 2, 
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 where ( is the angle between x and y.

d. x is called orthogonal to a set XE "orthogonal to a set  of vectors if x is orthogonal to each vector that is a member of the set.

e. The norm XE "norm" of x is defined as 
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Note 3     The norm of x represents the length of the vector x. Only the zero vector 0 has norm zero.

f. x is called normalized XE "normalized"  if
[image: image10.wmf]1
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g. A set of two or more normalized and pair-wise orthogonal vectors is called an orthonormal set of vectors XE "orthonormal set of vectors" . 

Example      The canonical basis is an example of an orthonormal set of vectors.

h. The Euclidean metric d is defined by 
	
	d(x, y) = ||x – y||.
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i. The value of d(x, y) is called the Euclidean distance XE "Euclidean distance"  between x and y.

j. The cross product XE "cross product"  of two vectors x and y in R3 is defined as the vector:
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Note 4     The vector x ( y is orthogonal to both x and y, and 
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where ( is the angle between vectors x and y.

The point set topology of Rn
Given a point p in Rn and a real value ( > 0, the set {q in Rn | d(p, q) < (} is called the (-neighbourhood of p.

Given a set D ( Rn and a point p, the following terms are defined:

a. p is an interior point XE "interior point"  of D if at least one (-neighbourhood of p is a subset of D.

b. The interior of a set XE "interior of a set"  D is the set of all points that are interior points of D. 
NOTE 1     The interior of a set may be empty.

c. D is open XE "open"  if each point of D is an interior point of D. Consequently, D is open if it is equal to its interior.

d. p is a closure point XE "closure point"  of D if every (-neighbourhood of p has a non-empty intersection with D.  

Note 2      Every member of D is a closure point of D.
e. The closure of a set XE "closure of a set"  D is the set of all points that are closure points of D.
f. D is a closed set XE "closed set"  if it is equal to the closure set of D.

g. A set D is replete XE "replete"  if all points in D belong to the closure of the interior of D.

Note 3      Every open set is replete. The union of an open set in Rn and any or all of the closure points of the set is replete. In particular, the closure of an open set in Rn is replete.

EXAMPLE 1     In R2 {(x, y) | (( ( x ( (, ((/2 ( y ( (/2} is open and therefore replete.

EXAMPLE 2     {(x, y) | (( ( x ( (, ((/2 ( y ( (/2} is replete.

EXAMPLE 3     {(x, y) | (( ( x ( (, ((/2 ( y ( (/2} is closed and replete.

Many concepts traditionally defined on open sets can be extended by continuity to replete sets. In particular, if f is a continuous function defined on a replete set D, and if f is continuously differentiable on the interior of D, the derivative of f shall be extended by continuity to all of D.

NOTE     The usual definition of the derivative of a function is restricted to open sets.

Smooth functions on Rn
A real valued function f defined on a replete domain in Rn is called smooth XE "smooth function" if its first derivative exists and is continuous at each point in its domain. 

The gradient XE "gradient"  of f is the vector of first order partial derivatives
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Definitions A.4(a) through A.4(g) apply to any vector-valued function F defined on a replete domain D in Rn with range in Rm
a. The i th-component function XE "component function"  of a vector-valued function F is the real valued function f i defined by f i = ei (F where ei is the i th canonical basis vector.  

In this case:

	
	F(v) = (f1(v), f2(v), f3(v), …, fm(v)) for v = (v1, v2, v3, …,vn) in D.
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b. F is called smooth XE "smooth vector function"  if each component function f I is smooth.
c. The first derivative XE "first derivative"  of a smooth vector-valued function F, denoted dF, evaluated at a point in the domain is the n ( m matrix of partial derivatives evaluated at the point:
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d. The Jacobian matrix XE "Jacobian matrix"  of F at the point v is the matrix of the first derivative of F. 

NOTE 1     The rows of the Jacobian matrix are the gradients of the component functions of F.

e. In the case m = n, the Jacobian matrix is square and its determinant is called the Jacobian determinant XE "Jacobian determinant" .

f. In the case m = n, F is called orientation preserving XE "orientation preserving"  if its Jacobian determinant is strictly positive for all points in D.

g. A vector-valued function F defined on Rn is linear XE "linear function"  if:

	
	F(ax + y) = aF(x) + F(y) for all real scalars a and vectors x and y in Rn.
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NOTE 2.      All linear functions are smooth.

A vector-valued function E defined on Rn is affine XE "affine"  if F, defined by
[image: image15.wmf](
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A function may be alternatively called an operator  XE "operator" especially when attention is focused on how the function maps a set of points in its domain onto a corresponding set of points in its range.

EXAMPLE     localization operator (see 5.2.6)

Functional composition

If F and G are two functions and the range of G is contained in the domain of F, then
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, the composition of F with G, is the function defined by 
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has the same domain as G, and the range of 
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 is contained in the range of F.  

Smooth surfaces in R3
A.1.1 Implicit definition

A smooth surface XE "smooth surface"  in R3 is implicitly specified by a real valued smooth function f defined on R3 as the set S of all points (x, y, z) in R3 satisfying:

a. f(x, y, z) = 0 and

b. grad( f )(x, y, z) ( 0.

In this case, f is called a surface generating function XE "surface generating function"  for the surface S.

EXAMPLE 1     If n ( 0 and p are vectors in R3 and f(v) = n ( (v – p), then f is smooth and 
[image: image20.wmf](
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 The plane which is perpendicular to n and contains p is the smooth surface implicitly defined by the surface generating function f.

Special cases:

When n = (1, 0, 0) and p = 0, the YZ-plane is implicitly defined.

When n = (0, 1, 0) and p = 0, the XZ-plane is implicitly defined.

When n = (0, 0, 1) and p = 0, the XY-plane is implicitly defined.

The surface normal n at a point p = (x, y, z) on the surface implicitly specified by a surface generating function f is defined as:
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NOTE     -n is also a surface normal to S at p.  The surface generating function f(t) determines the surface normal direction: n or -n.

The tangent plane XE "tangent plane"  to a surface at a point p = (x, y, z) on the surface S implicitly defined by a surface generating function f is the plane which is the smooth surface implicitly defined by h(v) = n ( (v–p) where n is the surface normal to S at p.

EXAMPLE 2     If a and b are positive non-zero scalars, define
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Then f is smooth and
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is never (0, 0, 0) on the surface implicitly specified by the set satisfying f = 0.

A.1.2 Ellipsoid surfaces

If a and b are positive non-zero scalars, the smooth function:
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is a surface generating function for a ellipsoid of revolution XE "ellipsoid of revolution"  smooth surface S.

When b ( a, the surface is called an oblate ellipsoid.  In this case a is called the major semi-axis
 XE "major semi-axis"  of the oblate ellipsoid and b is called the minor semi-axis XE "minor semi-axis"  of the oblate ellipsoid.

The flattening XE "flattening"  of an oblate ellipsoid is defined as f = (a - b)/a.

The eccentricity XE "eccentricity"  of an oblate ellipsoid is defined as ( = (a2 - b2)/a2.

The second eccentricity XE "second eccentricity"  of an oblate ellipsoid is defined as (’ = (a2 - b2)/b2.

When  b = a, the oblate ellipsoid may be called a sphere XE "sphere"  of radius r = b = a.

When a < b, the surface is called a prolate ellipsoid XE "prolate ellipsoid" .  In this case, a is called the minor semi-axis of the prolate ellipsoid and b is called the major semi-axis of the prolate ellipsoid.

NOTE 1     A sphere of radius r is also implicitly defined by the surface generating function 
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NOTE 2
The term spheroid is often used to denote an oblate ellipsoid with an eccentricity close to zero (“almost spherical”).
Smooth curves in Rn
Parametric definition

Smooth curve

A smooth curve XE "smooth curve parametrically specified"  in Rn is parametrically specified by a smooth one-to-one Rn valued function F(t) defined on a replete interval I in R such that ||dF(t)|| ( 0 for any t in I. 
EXAMPLE 1     If p and n are vectors in Rn such that n ( 0 and L(t) = p + t n, -( < t < +(, the L is smooth and ||dL(t)|| = ||n|| > 0.  The line which is parallel to n and which contains p is a smooth curve parametrically specified by L.

EXAMPLE 2     If a and b are positive non-zero scalars and b  ( a, define

	
	F(t) = (a cos(t), b sin(t)) for all t in the interval -( < t ( (.
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Then F is smooth and ||dF(t)|| ( b > 0 for all t in the interval and therefore parametrically specifies a smooth curve in R2.

An ellipse XE "ellipse, parametrically specified"  in R2 with major semi-axis a and minor semi-axis b, where 0 < b  ( a, is parametrically specified by:

	
	F(t) = (a cos(t), b sin(t)), for all t in the interval -( < t ( (.
	 MACROBUTTON MTPlaceRef \* MERGEFORMAT (A.16)



Tangent to a smooth curve

If C(t) parametrically specifies a smooth curve C passing through a point p = C(tp), the tangent vector to C at p shall be defined as:
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where dC(tp) = (dC1/dt, dC2/dt, …, dCn/dt) is the first derivative of C evaluated at tp. 

NOTE     -t is also a tangent vector to C at p.  The parameterization function C(t) determines the tangent vector direction: t or -t.

A locus of points is a directed curve XE "directed curve"  if it is the range of a smooth curve.

The tangent line XE "tangent line"  to the curve C at p is a smooth curve parametrically specified by T(s) = p + s t, -( < s < +(, where t is a tangent vector to C at p. See Figure A.1.
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Figure A.1 — Tangent to a curve

Angle between curves

If two parametrically specified smooth curves C1 and C2 intersect at a point p then the angle between the two curves XE "angle between two curves"  at p is defined as the angle between the two tangent vectors t1 and t2 of the two curves at p. This is illustrated in Figure A.2.
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Figure A.2 — Angle between two curves

Closed curve

If a smooth function F is defined on a closed and bounded interval I with interval end points t0 and t1 and if F parametrically specifies a smooth curve on the interior of I and p = F(t0) = F(t1), then F generates a closed curve XE "closed curve"  through p.

EXAMPLE

	
	F(t) = (a cos(t), b sin(t)), for all t in the interval -(+( ( t ( (+(.
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If a and b are positive non-zero scalars and ( is given, F generates a closed curve though p = (a cos((+(), b sin((+())
Surface curves, connected and orientable surfaces

If C is a smooth curve in R3 parametrically specified by F on the interval I and if S is a smooth surface generated by a surface generating function g, then C is a surface curve XE "surface curve"  in S if 
[image: image29.wmf](
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 for all t in I. In this case C shall be said to lie in S. 

EXAMPLE     If S is a smooth surface with generating function g and if C(s) defines a surface curve in S which passes through p = C(sp), then the tangent line to the curve at p, T(s) = p + s dC(tp), lies
 in the tangent plane XE "tangent plane"  to the surface S at p.  This is illustrated in Figure A.3. 
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Figure A.3 — Tangent plane to a surface

A smooth surface S is connected XE "connected"  if for any two distinct points in S, there exists a smooth surface curve parametrically specified by a smooth function defined on a bounded interval that lies in S and that contains the two points on the curve.

A connected surface S is called an orientable surface XE "orientable surface"  if the normal vector at an arbitrary point p on S can be continued in a unique and continuous manner to the entire surface. A normal vector at a fixed point p0 may be continued XE "continued"  if there does not exist a closed curve C in S through p0 such that the normal vector direction reverses when it is displaced continuously from p0 along C and back to p0. 

An oriented surface is an orientable surface in which one side has been designated as positive.

EXAMPLE     If S is implicitly defined by f = 0, the side bounding the set satisfying f > 0 is designated as the positive side.

NOTE 1     A Möbius strip is an example of a non-orientable surface.

NOTE 2     If S is implicitly specified, it is an orientable surface
.

Implicit definition 

A smooth curve XE "smooth curve implicitly specified"  in R2 may be implicitly specified by a real valued smooth function f on R2 as the set S of all points (x, y) in R2 satisfying:

a. f(x, y) = 0 and

b. grad( f )(x, y) ( (0, 0).

In this case, f is called a curve generating function XE "curve generating function"  for the curve C.
EXAMPLE     If a and b are positive non-zero scalars, define
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Then f is smooth and
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is never (0, 0) on the curve f = 0. 

If 0 < b ( a, an ellipse XE "ellipse, implicitly defined"  in R2 with major semi-axis a and minor semi-axis b, is implicitly specified by the curve generating function defined by:
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Arc length and geodesic distance

If p = F(tp) and q = F(tq) are two points on a smooth curve defined by F and tp < tq, the arc length XE "arc length"  from p to q along the curve is defined by

	
	
[image: image34.wmf]q

p

t

t

ò

||dF(t)|| dt.
	 MACROBUTTON MTPlaceRef \* MERGEFORMAT (A.22)



Given two distinct points p and q on a connected smooth surface S, a geodesic XE "geodesic"  from p to q in S is a surface curve in S of minimal arc length that connects the two points. The geodesic distance XE "geodesic distance"  from p to q in S is the arc length along a geodesic from p to q in S.

A.2 Projections

A.2.1 Geometric projections into a developable surface

A projection XE "projection"  in R3 is a smooth function defined on a connected replete domain in R3 onto a surface in the domain whose points are all fixed points of the function.  Projections of interest in this International Standard are geometrically derived and project their domain onto a developable surface such as (a subset of) a plane, cone, or cylinder.  Such projections are often classified as planar, conic, or cylindrical projections according to the class of the fixed-point surface.

A.2.2 Planar projections

A.2.2.1 Orthographic projection

Given a plane in R3, the domain of the orthographic projection XE "orthographic projection"  function is either all of R3 or the half space on one side of (and including) the plane.  Given a point x in the domain, if x is not in the plane, there is one line that both passes through x and is perpendicular to the plane.  If p is the point at the intersection of that line with the plane, the projection F assigns the value p to x.  That is F(x) = p.  If the point x lies in the plane, F(x) = x so that points in the plane are fixed points of the projection.  In the case that the plane is the XY-plane, F(x, y, z) = (x, y, 0).


[image: image35]
Figure A.4 — Orthographic projection

A.2.2.2 Perspective projection

Given a plane in R3 and a point v (the vanishing point) not contained in the plane, the domain of the perspective projection XE "perspective projection"  function is the set of all points of R3 in the half space (including the plane) that does not contain the point v.  Given a point x in the domain, there is one line that passes through both x and v. If p is the point at the intersection of the line with the plane, the projection F assigns the value p to x.  That is F(x) = p. Note that if point q lies in the plane, F(q) = q so that it is a fixed point of the projection.


[image: image36]
Figure A.5 — Perspective projection

A.2.2.3 Stereographic projection

Given a plane in R3 and a point v not contained in the plane, the domain of the stereographic projection XE "stereographic projection"  function is the set of all points of R3 in the half space on the point v side of (and including) the plane that are closer to the plane than the distance of v to the plane.  Given a point x in the domain, there is one line that passes through both x and v. If p is the point at the intersection of the line with the plane, the projection F assigns the value p to x.  That is F(x) = p. Note that if point q lies in the plane, F(q) = q so that it is a fixed point of the projection.


[image: image37]
Figure A.6 — Stereographic projection

A.2.3 Cylindrical projection

Given a cylinder and point v on its axis, a cylindrical projection XE "cylindrical projection"  function is defined on the domain R3 excluding the axis points as follows:  Given a point x in the domain, there is one ray originating at v that passes through x. If p is the point at the intersection of the ray with the cylinder surface, the projection F assigns the value p to x.  That is F(x) = p. Note that if point q lies on the cylinder surface, F(q) = q so that it is a fixed point of the projection.  


[image: image38]
Figure A.7 — Cylindrical projection

A.2.4 Conic projection

Given a (half) cone and point v on its axis inside the cone, a conic projection XE "conic projection"  function projects a point x to the point p where p is the intersection of the cone with the ray from v through x.  The domain of this projection is the union of all rays originating at v that intersects the cone and excluding the point v.

[image: image39]
Figure A.8 — Conic projection
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smooth curve parametrically specified
291

smooth function
289

smooth surface
290

smooth vector function
289

sphere
291

stereographic projection
296

surface curve
293

surface generating function
290

tangent line
292

tangent plane
290, 293

vector
287
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� a is half the length of the major axis.  � HYPERLINK "ISO_IEC_18026_Y_(E).doc" \l "I19111" ��ISO 19111�  labels the symbol a as the semi-major axis.


� Since g(C(t)) = 0, the chain rule implies that  grad(g) ( dC = d(g(C(t)))/dt = 0, so that n ( dC = 0, where n is the surface normal at p. h(v) = n ( (v–p) defines the tangent plane� XE "tangent plane" � to the surface S at p. h(T(s)) = h(p + s dC(tp)) = n ( (p + s dC(tp) – p) = s(n ( dC) = 0, so the tangent line lies in the tangent plane.


� Since a surface generating function for S is smooth, its gradient is continuous. Therefore the surface normal will be a continuous function of points on a curve that lies in S.
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