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Annex B 

(informative) 
 

Implementation notes 

B.1 Introduction 

This informative annex provides advisories relative to the implementation of the spatial operations contained 
in this International Standard. Implementations may introduce errors of various kinds. Since the term error has 
many different meanings, depending on the application, a brief description of each of the various types of error 
referenced in this International Standard is included in this annex.  This discussion is intended to clarify the 
meaning of the types of errors as they relate to compliance. 

B.2 Error types considered in the International Standard 

The term error has many meanings in common usage of the language. A dictionary definition might contain 
definitions such as: 
 

a) the failure of a computer program to produce an anticipated result, such as a result not falling within an 
expected range, 

 
b) a variation between the true value of a mathematical quantity and a calculated or measured value, or 

 
c) a mistake as in an implementation or in the use of an implementation. 

 
These are the error terms that are the most important to this International Standard. The term error is often 
defined in terms of words that themselves have alternative meanings. When used in a scientific or technical 
sense a modifying adjective is often used for specificity. In this International Standard, modifying adjectives 
are used to provide this specificity. In most cases the definitions of such terms are defined where used. 
 

B.2.1 Measurement and modelling error 

In many applications and in particular in geodesy, statistical models are often used to define and characterize 
the error in developing reference models. This process is quite detailed, but it suffices to provide a simplified 
example. Measurements taken on an appropriate set of points are used to develop the reference model. This 
process utilizes an assumed mathematical model for the shape of the Earth, usually an oblate ellipsoid or 
portion thereof, formulated in terms of a geocentric coordinate system with its origin at the centre of mass of 
the Earth. Free parameters are adjusted in the model to provide a minimum variance fit to the nominal surface 
of the real Earth. In this way most of the local earth reference models (or datums), such as ORM 
EUROPE_1950, are developed. The root-mean-square difference between the measured points and the 
points computed from the reference model is termed the residual error or standard error. Other expressions of 
measurement error such as tolerance or maximum error or error interval are also in use. 

In this International Standard the reference models used are taken to be exact, that is, to have zero residual 
error. However, when specifying such reference models residual error values may be given with the reference 
model parameters for completeness. It is emphasized that errors associated with functional conformance in 
this International Standard do not include residual errors or tolerance. 



ISO/IEC 18026:2012(E) 

 

410 © ISO/IEC 2012 – All rights reserved

 

B.2.2 Implementation error 

Conformance compliance in this International Standard is focused on the notion of implementation error. 
Implementation error consists primarily of: 

a) use of an incorrect mathematical formulation, 
 
b) coding error such that a user error is not detected, 

 
c) coding errors by which the mathematical formulation is incorrectly implemented, 

 
d) excessive round-off error in the implementation of a mathematical formulation, 

 
e) approximations used to speed up computations that cause excessive approximation error, 

 
f) a formulation or implementation does not compensate for singularities or near singularities at some 

points in the valid domain of the formulation, or 
 

g) results that lie outside a valid range not detected by the implementation. 
 
The process of evaluating implementation errors is, itself, subject to user error including: 
 

a) user error such as selecting the wrong earth reference model, 
 

b) user error in trying to employ the software outside a valid region, and 
 

c) user error in trying to test the software outside a valid conformance region. 
 

B.2.3 Finite precision 

It is generally not possible to exactly implement theoretical formulations on a digital computer due to 
limitations in representing real numbers on a finite word length computer. If x is a real number, its 
representation on a digital computer can be denoted as xc. The difference between x and xc is termed 
digitization error. There are some real numbers that can be exactly represented, but generally the digital 
representation is only good to a prescribed number of bits depending on the precision of the floating-point 
representation of the computer system used. Implementation of spatial operations can involve relatively large 
numbers. Loss of significance can occur in computing the differences of numbers with large absolute values 
and the products of relatively small numbers with large numbers.  

Finite precision also can lead to excessive round-off error. The round-off error usually depends on the 
algorithm employed. Sometimes the round-off error can be minimized by a different algorithm design.  

EXAMPLE   Using single precision arithmetic for SRFs associated with the Earth may lead to a loss of precision on the 

order of half a metre even when the application is for the near Earth region. 

NOTE   To mitigate loss of precision, it is advisable to employ double precision (see ISO/IEC/IEEE 60559) arithmetic 
for floating-point operations. 

B.2.4 Approximation error 

The replacement of theoretical formulations with approximations made to increase computational efficiency 
introduces an error. The difference between the true value x and the approximation value xa is the 
approximation error. The implementation of an approximation using a double precision representation includes 
both the digitization and approximation errors. The combination of these errors is termed the computational 
error. However, the magnitude of the approximation error usually dominates that of the digitization error and 
therefore the digitization error may generally be ignored. 
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The acceptable computational error is application dependent. Increased capabilities of real world 
measurement systems and improved SRF models have led to increased requirements for more stringent error 
tolerances. In high-resolution simulation applications the requirement is to keep the computational error in 
position as small as 1 millimetre. Increased system accuracy requirements coupled with efficiency 
requirements place a considerable premium on development and use of efficient algorithms. Given the 
variability in computer system characteristics and application domain accuracy requirements there is no single 
solution that fits all cases. Subsequent clauses provide a set of general guidelines for algorithm designers and 
software developers that are intended to broaden their conceptual approach to implementations. These 
guidelines are specific to Earth-related spatial operations but most of them are applicable to the more general 
case. 

B.3   General observations on implementations 

In many application domains computational efficiency is very important. Some examples of such applications 
include: embedded systems with real time control feed-back, the processing of large numbers of very large 
environmental data files, real time graphics display of geographic data and large scale simulations involving 
hundreds of thousands of interacting objects. Historically, computational assets were much less capable than 
those currently available. As a result, much research over the last century has been devoted to reducing the 
computational complexity for the type of spatial operations contained in this International Standard. Many of 
the techniques currently used were developed for hand computation or in the context of more rudimentary 
computational systems. Implementers have been slow to adapt to the capabilities provided by computational 
systems that currently exist. Concomitant with the increased computational capabilities there have been 
significant technical advances in the field of computational mathematics. New methods have emerged along 
with better strategies for exploiting the current computational capabilities. These advances in computational 
mathematics have generally not been exploited for the types of spatial operations within the scope of this 
International Standard. 

The strategy for selecting algorithms for implementation is dependent on the intended application. For a 
general service system, where an interactive user needs a few spatial operations computed, efficiency is 
becoming much less important. Current machines are so fast that humans cannot perceive the difference 
between very fast machines and very slow ones. For such application domains the choice of algorithm is not 
critical as long as it is accurate, reliable and covers the domain of interest.  

For computationally intense applications most of the mathematical formulations contained in this International 
Standard are not appropriate for direct implementation. Some of the closed-form solutions may be 
unacceptably inefficient and may be replaced by various approximate methods. 

EXAMPLE   Most implementations of the inverses for map projections are implemented with finite series methods in 

order to avoid using potentially inefficient iterative methods. 

B.4 Guidelines for algorithm development for spatial operations 

B.4.1 Introduction 

Many computational algorithms have been developed for spatial operations processing for a wide range of 
applications. Many of these are not appropriate for efficient processing using current computer system 
environments. If an application domain does not require efficient processing, any accurate algorithm for 
computing spatial operations may be employed. In such cases, it is recommended that closed-form solutions 
be employed when available, and iterative procedures otherwise. 

This clause includes a set of guidelines or advisories for use in designing efficient algorithms. While the target 
environment is generally a computer system with a super-scalar architecture, many of these advisories are 
applicable to legacy computer systems and specialized systems used for embedded processing. Most of the 
advisories are applicable to spatial operations processing for celestial bodies other than the Earth. 
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B.4.2 The computational environment  

The properties of the computational environment should be taken into account. In recent decades a significant 
improvement in computational capabilities has occurred. Yet, in some application domains, algorithms that 
were developed for hand calculation are still being implemented. In addition, many traditional computational 
methods developed for legacy computers are inappropriate for the new environment but continue to be used.  

The principal characteristics of the new computational environments include: 

a) readily-available low-cost Dynamic Random Access Memory (DRAM), 

b) development of very high-speed cache memory that permits the dynamic allocation of blocks of critical 
data to the processor cache memory, 

c) super-scalar architectures that permit pipelined (parallel) processing, 

d) integrated processors that permit very high-speed processing for some critical mathematical functions 
(e.g., some transcendental functions and square root), 

e) development of compilers that exploit the advantages of super-scalar architectures, 

f) development of optimizing operating systems that re-order computations and memory accesses in 
real time to increase efficiency, and 

g) integrated support for Institute of Electrical and Electronics Engineers (IEEE) double precision 
floating-point representation in which the mantissa is 52 bits (this is equivalent to 15 plus decimal 
digits of accuracy (see also ISO/IEC/IEEE 60559). 

An example of the impact of these changes is in the computation of trigonometric functions. In the legacy 
computational environment, trigonometric functions were evaluated as system-level subroutines written in 
software. Such routines were very slow, sometimes taking between 30 and 45 floating-point operations to 
complete. To meet system timeline specifications, software developers often replaced trigonometric 
subroutine calls by in-line procedures that used piecewise linear or quadratic trigonometric calculations 
(colloquially termed “table lookup”). This required a considerable portion of the relatively small memory 
available on legacy computers. Because memory was scarce at the time, this technique could only be used 
sparingly.  Accuracy was often degraded so that the array of fitting coefficients did not get too large. 

In the current computational environment the trigonometric functions are computed in special processors 
using high-speed memory and parallel processing. As a result, these functions produce double precision 
results very quickly relative to the basic central processor cycle time of the computer. In particular, a sine 
function call executes in a processing time equivalent to 8 to 10 floating-point operations. Square root calls are 
even faster. On some computers, implementing a general in-line sine sub-routine (by table lookup) may 
actually be slower than calling the system sine function. This can happen because the access time required to 
fetch the appropriate fitting coefficients from dynamic random access memory may take longer than the entire 
system routine computation.  On the other hand, for modern machines where memory is virtually unlimited, it 
is possible to develop in-line algorithms for the standard transcendental functions with accuracies approaching 
that of double precision.  Carefully designed procedures based on piecewise continuous approximations can 
be developed for this purpose. 

The development of in-line code for general-purpose calculation of standard mathematical routines is also 
useful for reducing the execution time of compound functions or mathematical functions that are not in the 
system library. In particular, it may be more efficient to evaluate sin(f(x)) in-line rather than computing f(x) and 
then calling the sine function. The efficacy of the in-line approach in such a case depends on the nature of 
f(x). 
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B.4.3 Domain of application  

The domain of applicability should be defined before developing or selecting an algorithm. Algorithm 
designers and software developers may expend valuable development and computational time forcing their 
methods to work in non-practical regions such as near the centre of an ERM or at ellipsoidal heights of 100 
million kilometres from the surface. The number of applications for such regions is small (or zero) and the 
interest in these regions is primarily academic. For an Earth referenced application there are several regions 
of practical interest: 

a) For aircraft, an appropriate region in terms of ellipsoidal height is –200 metres to 35 000 metres for all 
latitudes and longitudes.  This covers the region where air-breathing vehicles can operate. 

b) For sub-surface operations an appropriate region is –12 000 metres to +200 metres for all latitudes 
and longitudes. This region covers the lowest bathymetric point of the Earth (Marianas Trench) to 
slightly above the ocean’s surface.  

c) Space operations may require a region extending above 35 kilometres to beyond the orbit of the moon.  

All regions may be further divided into sub-regions for particular applications in order to simplify formulations 

or for computational efficiency. Usually the latitude domain in this application is [-π/2, π/2] and the longitude 

domain is (-π, π]. On occasion, a particular application may be restricted to a smaller latitude/longitude region 
in order to simplify formulations, and in the case of map projections to reduce distortions.  

B.4.4 Define a meaningful error measure  

In many situations involving spatial operations computation, the resulting variables are not exact due to 
approximations made in the computational formulations. An error measure is needed to determine the 
approximation error. If the target variables are in terms of distance in a Euclidean coordinate system, a 
Euclidean metric can be used to measure the approximation error. Such an error measure is termed position 
error. Often the maximum error in the absolute value of the difference between the true values and the 
approximate values of each coordinate-component is used. 

The average value of the magnitude of the differences of each coordinate-component of position error has 
also been used as an error measure. This practice makes the approximation errors appear to be much smaller 
than the maximum errors, and depends on where the samples for the average are collected. This approach is 
misleading and should not be used. 

Sometimes the target variables contain angular errors along with distance errors. In this case the angular error 
could be converted to distance so that a Euclidean error measure can be applied. For some spatial operations 
involving angular error the conformance criteria can be directly specified in terms of angular error.  Some 
variables, such as point distortion, are unit-less, and the resulting computational error is unit-less.   

B.4.5 Avoid excessive computational accuracy  

The literature on methods for spatial operations processing contains many algorithms that are excessively 
accurate. One paper on geocentric to geodetic coordinate conversion develops a procedure where the 
approximation error is 10

-20
 metres, an accuracy far exceeding any practical use. Many iterative procedures 

can achieve such accuracies provided that a computational environment is available with sufficiently high 
precision arithmetic. However, it is important not to waste computer cycles to attain superfluous accuracy. 

EXAMPLE   A method, A, with maximum error 10
-8
 m is sometimes declared superior to a method, B, which has a 

maximal error of 10
-6
 m. If method A takes more processing time than method B, it is not superior. In fact it is quite likely 

that both methods are too accurate. Suppose there is a method C with maximum error less than 10
-4
 metres but takes less 

computer time than A or B.  Then method C would likely be preferable for most (if not all) applications. 
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B.4.6 Determine the acceptable error before starting  

The maximum allowable position error should be determined before starting an algorithm development. When 
position error is small, its component errors are also very small. When a position error criterion is used, the 
nominal position error is usually much smaller than the maximum error. In some applications, such as in 
simulations, it is important to keep the computational error very small, as small as 1mm. It is difficult to 
conceive of an application domain that requires, or would find useful, errors smaller than this for spatial 
operations. This is particularly the case if scarce computational resources are used in order to achieve 
superfluous accuracy. 

B.4.7 Mathematical approaches  

Mathematical formulations for spatial operations processing can be relatively complex. This complexity is 
driven by the fact that many SRFs of interest are based on oblate ellipsoid ORMs. This results in formulations 
in which the principal equations involved are non-linear and sometimes not solvable in closed form (e.g., 
geodesic distance). For most spatial operation formulations it is also necessary to have an inverse spatial 
operation. Many spatial operation formulations have closed-form solutions in one direction but do not have 
closed-form solutions for the inverse. This situation leads to a requirement to solve multivariate non-linear 
equations where no closed solution is readily available.  

Traditionally, either truncated power series, or iterative solutions have been used for solving spatial operation 
computation problems. Power series solutions are almost always inferior to well-designed iterative solutions 
from an efficiency point of view. Both of these methods have an interesting property that is often not 
recognized. Almost all existing implementations of truncated power series solutions use all the terms in the 
series no matter how close the independent variables are to the expansion point. In fact, when the 
independent variables are close to the expansion point only a few terms are needed and the effect of higher-
order terms is vanishingly small. It is often easy to develop simple tests on the independent variables to 
determine how many terms to use in a particular formulation. A similar situation exists in determining how 
many iterations to perform in an iterative approach. The maximal number of iterations required to achieve a 
required accuracy over some domain can be determined when testing an implementation. The implementation 
of the iterative procedure can then use a fixed number of iterations. This avoids excessive iteration and avoids 
the need for a termination test (which is usually computationally expensive). Legacy software designs often 
use the maximum number of terms or iterations, regardless. This is often a significant waste in computation 
time. 

Another approach for solving multivariate non-linear equations is much more appropriate in the new 
computational environment. This is the use of curve fitting or approximation of a function or the inverse of a 
function. In its simplest form, this amounts to piecewise approximation or “table lookup”. Historically, the 
perceived penalty associated with this approach is that it takes too much memory to store the coefficients of 
the piecewise-defined functions to achieve usable accuracy. This penalty has been virtually eliminated by the 
availability of large capacity low-cost dynamic random access memory. The trend in computational 
mathematics is to use low-order local approximations for efficiency.  

B.4.8 Good programming and formulation practices 

Experienced programmers usually employ good programming practices. They move the computation of global 
constants out of embedded loops to start up procedures, move locally computed constants to the highest 
possible level, nest polynomials, avoid using power functions and leverage many other good practices. 
Unfortunately, some universities now teach that these practices are not important because modern computers 
are so fast that they are not needed, or that optimising compilers will invoke such good practices 
automatically. In complex algorithms it may not be easy or possible for a compiler to clean up poor practices, 
so it is advisable to always use good programming practices in situations where performance is important.  

In many cases the formulation implemented is the published form of the mathematical formulation. Often the 
author of the formulation is not familiar with computational mathematics or has chosen a mathematical 
formulation  for  publication  that  is  unambiguous  and  convenient  for  exposition. Often  the efficiency of the  
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formulation can be greatly improved by eliminating redundant transcendental functions. In particular, 
trigonometric functions can sometimes be eliminated or simplified through the use of identities or just simple 
observations. 

One simple illustration is a test such as sqrt(x) < a, used as a branch point test. If a is a constant, this can be 
re-written in the equivalent form, x < a·a. This observation generalizes to tests in the form f(x) < a that may 
become x < f

 -1
(a) (a constant) in cases where this makes mathematical sense.  

More complex examples have lead to publications whose conclusions about convergence rate and processing 
time requirements are incorrect. A classic case is in the conversion of geocentric coordinates to geodetic 3D 
coordinates using the originally published form of Bowring’s method [BOWR]. If the algorithm is formulated as 
published, it appears that several intermediate trigonometric function evaluations are needed for each 
iteration. In fact, only a square root is needed for each iterate [TOMS], [FUKU]. Fukushima has coined an 
appropriate term for the direct implementation of the published form of Bowring’s method. He calls this a 
“naive implementation”. This appellation can be applied to many spatial operation formulations where the 
direct implementation of the published form of the formulation is often naive.  

B.4.9 Design in context 

Spatial operation computations are usually not performed in isolation. More often they are used as part of a 
sequence of spatial operations. In particular, a coordinate in the celestiocentric SRF is converted to a 
celestiocentric 3D SRF and this is immediately followed by a conversion to a map projection SRF. Such a 
sequence is sometimes referred to as a chain of spatial operations. By anticipating a chain, some of the early 
calculations may be saved for use later in the chain. Such chains often occur in simulations and embedded 
systems. 

EXAMPLE   When the above chain includes Transverse Mercator, the curvature in the prime vertical, the sine of 
latitude, the cosine of latitude and the trigonometric functions of longitude will be needed to support the conversion. 

Often when simulating dynamics models the values of latitude and longitude are not needed at all, only the 
trigonometric functions of these are used. Some procedures for converting geocentric coordinates to geodetic 
coordinates accurately compute these variables as part of the process and they can be saved for future use in 
the chain. Other techniques do not compute these accurately and only supply accurate angular values for 
latitude and longitude. If the trigonometric functions of these are needed, they have to be computed by calling 
at least a cosine function followed by a square root (or a sine function call). When selecting algorithms, 
preference should be given to those approaches that are useful for efficient chaining. 

B.4.10 Software verification and computational error testing 

Verification testing involves determining if an implementation properly reflects the mathematical formulation of 
the problem. Implementation error evaluation is the verification of items a) to g) in B.2.2. Much of the 
verification testing is done by inspection. Rapid changes in approximation error or unexpected results on 
some subset of the area of interest often indicate a formulation or implementation error. As a result, 
verification testing is aided by approximation error testing if the domain of test points is dense enough. 

Implementation error testing often uses results obtained from external sources, usually from authoritative 
agencies. In fact it is always helpful to compare results to other implementations developed for spatial 
operations. Unfortunately, such authoritative data may be sparse or not cover the full range of the area of 
interest. Fortunately, many spatial operation formulations have closed-form solutions in at least one direction. 
Closed-form solutions may not be very efficient and approximation algorithms may be needed to provide high-
speed solutions. However, closed-form solutions are very useful for constructing reliable data sets for testing. 

In most cases it is very difficult to exactly determine the maximum computation error. In some cases, 
mathematical analysis can provide analytic bounds to the error. However, these may not relate well to what is 
actually implemented and the vagaries of computation with a finite word length. In the end, the error analysis 
should be accomplished with respect to the procedures as implemented. Consequently, it is desirable to test 
an algorithm on a very large set of points uniformly distributed over the region of interest. This is commonly 
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referred to as dense testing. The set of test data points themselves should be automatically generated over a 
region or sub-region of interest. A convenient way to do this is to define a lattice of exact reference data 
points. Such a lattice is often referred to as a gridded data set. This lattice is used in conjunction with a 
closed-form solution to develop a corresponding reference data set for the processed spatial operation. This 
set is taken to be exact if double precision arithmetic is used and assumes that no implementation or 
formulation errors are made. A procedure then can be developed to test the implementation of an approximate 
algorithm at each grid point. This procedure determines the absolute approximation error at each point and 
the maximum of all these errors is computed for the whole grid. As the grid size is made smaller the maximum 
approximation error should converge to a fixed value. This fixed value will closely approximate the maximum 
approximation error over the region of interest. 

Occasionally a test is developed where a spatial operation is computed for a given point and this is followed 
by the computation of the inverse of the operation. The spatial operation is then re-computed for the resulting 
point and the inverse is applied to this new point. This type of testing is termed round trip testing. Continuing 
this process a large number of times will generally lead to divergence of the results. This is to be expected. 
Both round-off error and approximation error are generally present in each direction. These normally do not 
cancel each other so that the approximation error will grow. Such tests are meaningless for validating a spatial 
operation.  

The lack of symmetry of the error between an approximate spatial operation process and its inverse can also 
cause difficulties when points are on or very near a validity boundary. Application developers need to be 
aware of this type of problem and to provide guards against this type of behaviour. 

EXAMPLE   When a surface geodetic coordinate represents a point near or on a zone boundary for a UTM SRF set 
member, the UTM coordinate is usually computed using a truncated power series. Due to the combination of 
approximation and digitization error the resulting UTM coordinate may be in an adjacent UTM zone. Applying the inverse 
spatial operation may yield a surface geodetic coordinate in that adjacent UTM zone and not in the original UTM zone. 
This is due to the lack of symmetry of the forward and inverse computational errors. 

B.4.11 Singularities and near singularities 

Certain points may represent points of singularity in a formulation. Values at the singularity are usually 
determined analytically and the mathematical formulation accounts for the singularity. In computing values 
close to a singularity, numerical sensitivities can occur. In the neighbourhood of such a point, dense testing 
should be performed to ensure that proper results are obtained throughout the neighbourhood.  

B.4.12 Performance testing  

Since most of these guidelines are addressing efficiency, it is important to consider performance testing. As 
the computational environment has evolved with time to its current state, performance testing has become 
increasingly difficult to conduct. The vast majority of legacy and current literature on algorithm development for 
spatial operation processing has relied on counts of both arithmetic operations and system-level mathematical 
function calls to estimate performance. This policy generally ignores the system-to-system variation of the 
performance of arithmetic operations and mathematical functions. At best this policy is only valid for making 
relative comparisons for the same computational environment. Even then, operation counts are only reliable 
when the difference in operation counts is large. Obviously, if one method requires many more operations, 
transcendental functions, and square roots than another, it probably will be slower than an alternative that 
requires less of these. However, determining a percent difference in performance with this approach is apt to 
be imprecise. 

Another approach is often taken to performance testing. This consists of developing a simple program in 
which the algorithm is embedded in a loop. The loop execution time is determined by executing an empty loop 
a large number of times using a system-level timer. The algorithm to be tested is then embedded in the loop 
and execution time is determined again. The time difference of the two processes is divided by the number of 
loop cycles and the result is used as an estimate of the execution time of the algorithm. This allows 
comparisons between alternative algorithms to be made on the same computer. Even on legacy systems 
some care should be taken with this technique. If the algorithm is very simple and if an optimising compiler is 
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used, sometimes setting the optimiser to a high level can produce erroneous results. Thus, if the procedure is 
x = sin(a), the compiler may recognize that the result is the same for every pass through the loop and move 
the computation outside the loop. 

Simple loop tests like the one discussed in the previous paragraph are likely to be unreliable for predicting 
performance when implemented on a machine with a super-scalar architecture. An algorithm’s performance 
may be quite different when it is embedded in a large application program.  

The use of a simple loop test is termed in vitro testing while testing an algorithm embedded in a larger 
application program is termed in vivo testing. This is in analogy with in vitro testing in biological medicine 
where an experiment is generally small and controlled, such as being limited to a Petri dish and conducted 
within a controlled environment. In the biological medicine context, in vivo testing is done within its natural 
environment, perhaps in a living body. 

In vitro tests are much less reliable in the new computer environment because an operating system will be 
able to concentrate all of its capabilities on a relatively small code to make optimal use of cache memory and 
parallelism. The same algorithm, tested in vivo will have competition from other processes for computational 
resources. When comparing the performance of two algorithm options even their relative performance may 
not be preserved when transitioning from in vitro to in vivo testing. Obviously, in vivo testing may not be 
possible in a development program. The code in which the algorithm is to be embedded may not even exist 
until late in the program. This suggests that initial tests be done by inspection (operation counts) and by in 
vitro testing with the understanding that the results are not precise. When enough of the product software is 
available, re-testing in vivo is recommended. 

B.5 Practical considerations  

B.5.1 Distortion considerations 

For map projections, distortion effects generally increase with distance from the origin. Distortions may 
become unacceptably large for a particular application domain. In this case the distortion effects dominate the 
computational approximation error. As a consequence, it may not be appropriate to develop algorithms that 
have minimal computation error in such regions. In practice an implementation may be designed to prevent 
processing the projection in this case or it may do so but issue a warning that distortions are large.  

B.5.2 Validity checking 

An implementation should verify that both input and output data for a spatial operation are in the proper 
domain and range. 

In some spatial operations the domain of the implementation may be restricted to avoid computations near 
singular points.  

When using even a convergent iterative routine, a computation near a pole may result in a latitude slightly 
exceeding 90 degrees. The developer needs to test for this case and set the result to 90 degrees. 

B.5.3 Spherical ORMs 

All of the mathematical formulations for spatial operations with respect to SRFs based on an oblate ellipsoid 
ORM will be valid when the eccentricity of the ellipsoid is set to zero. That is, they are valid for spherical 
reference models. However, the majority of spatial operations for the spherical case have formulations that 
are available in closed form. It may be more convenient for some application domains to use the closed-form 
solutions in this case. 
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