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10 Operations 

10.1 Introduction 

This International Standard specifies operations on SRF coordinates and, in the case of 3D object-spaces, on 
SRF spatial directions, vectors and orientations. Underlying these operations are the similarity transformations 
relating two ORMs. Similarity transformations are treated first in 10.3. The general case of changing the 
representation of a position as a coordinate in one SRF to its representation as a coordinate in another SRF is 
specified in 10.4, followed by important special cases. The specification of a spatial direction, vector or 
orientation in the context of an SRF is defined, and operations for changing these representations from one 
SRF to their corresponding representations in another SRF are specified in 10.5.  

Euclidean distance in 2D and 3D object-space is specified in 10.6. Geodesic distance and azimuth on the 
surface of an oblate ellipsoid (or sphere) are specified in 10.7. 

10.2 Notation and terminology  

An important category of spatial operations is changing the representation of spatial information in one SRF to 
the representation in a second SRF. For these change of SRF operations, the adjective “source” shall be used 
to refer to the first SRF, and the adjective “target” shall be used to refer to the second SRF. 

The notation in Table 10.1 is used throughout this clause. 

Table 10.1 — Notation  

Notation Description 

ORMS Source ORM 

ORMT Target ORM 

ORMR Reference ORM for a given spatial object 

HRT Reference transformation from the reference ORMR to ORMT 

HSR Reference transformation from ORMS to the reference ORMR 

HTR Reference transformation from ORMT to the reference ORMR 

HST Similarity transformation from the embedding of ORMS to ORMT 

MRT Rotation matrix from the reference ORMR to ORMT 

MSR Rotation matrix from ORMS to the reference ORMR 

MST Rotation matrix from ORMS to ORMT 

MTR Rotation matrix from ORMT to the reference ORMR 

SRFS Source SRF based on ORMS 

SRFT Target SRF based on ORMT 

SRFL The local tangent frame SRF at a coordinate (See 10.5.2) 

CSS CS of SRFS 

CST CS of SRFT 

S
G  Generating function of CSS 

1

T

−

G  Inverse generating function of CST 

S
c  Coordinate of a spatial position in SRFS 
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T
c  Coordinate of a spatial position in SRFT 

S
n  Direction vector in SRFS (See 10.5.2) 

T
n  Direction vector in SRFT (See 10.5.2) 

RST Orientation of SRFT with respect to SRFS in the position vector rotation convention 

 

10.3 Operations on ORMs 

10.3.1 Introduction 

The similarity transformation (see 7.3.2) HST between a source/target pair ORMS and ORMT underlies the 
coordinate operations in 10.4. Given a set of n ORMs there are n(n-1) such source and target ORM pairs. 
Instead of specifying the full set of similarity transformations, this International Standard reduces the 
requirement to specifying the reference transformation HSR from each object-fixed source ORMS to the 
reference ORMR for a given object. This subclause specifies the methods of expressing a similarity 
transformation HST in terms of the reference transformations for the source and target ORMs. The cases of 
ORMs for a single object are treated in 10.3.2. The more general cases in which ORMS and ORMT are ORMs 
for different objects are treated in 10.3.3. 

10.3.2 ORMs for a single object 

If ORMS is an object-fixed ORM, its reference transformation HSR is a type of similarity transformation. Any 3D 
or 2D similarity transformation may be represented with the STT ROTATE_SCALE_TRANSLATE in the 3D 
case or STT ROTATE_SCALE_TRANSLATE_2D in the 2D case (see Tables 7.19 and 7.20). Thus using the 
notation of the STT formulation, HSR may be represented in the form given by Equation (10.1).  

 

SR SRSR

R S SR S

x x x x

y y y s y

z z z z

  ∆       
        

= ≡ ∆ +        
         ∆        

H M  

(10.1) 

NOTE   The processes by which ORMs for the Earth are established are based on physical measurements. These 
measurements are subject to error, and therefore introduce various types of relative distortions between ORMs. Equation 
(10.1) is based on the assumption that positions in object-space are error free, and the equation includes no compensation 
for these distortions.  

The reference transformation HTR from ORMT to the reference ORMR is also a similarity transformation.  

An important operation is the similarity transformation HST from ORMS to ORMT, when neither the source nor 
the target is necessarily the reference ORM. The HST transformation may be expressed as the composition of 

H
SR  with 

1

TR

−

H  (or HRT, which is equivalent to the inverse of HTR) as in Equation (10.2) (see Figure 10.1): 

 = �
ST RT SR

H H H  (10.2) 
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Figure 10.1 — Composed transformations 

RT
H  is also a similarity transformation:  
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   ∆     
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   ∆   
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Because the matrix 
TR

M  is a rotation matrix, its transpose 
TR

M
T  is also its inverse 1

TR

−

M . The inverse of 
TR

M  

is also the matrix 
RT

M  corresponding to the reverse rotations of ORMT with respect to ORMR. In particular: 

   1

RT TR TR

−

= =M M M
T  

and 

   

x x x

y y y
s

z z z

  ∆     
      

= ∆ +      
       ∆      

RT RT

TR

R RT R

1
H M . 

The composite operation = �
ST RT SR

H H H  reduces to: 

 x x x x

s
y y y y

s
z z z z

    ∆       
          

= = ∆ +          
           ∆          

�
SR

ST RT SR ST

TR

S S ST S

H H H M  

(10.3) 
where: 

   

ST RT SR

RT

TR

ST RT SR

,  and

1
.

x x x

y y y
s

z z z

=

∆ ∆ ∆     
     
∆ = ∆ + ∆     

     ∆ ∆ ∆     

M M M

M

�

 

 

If the rotations 
SR TR
 and M M are equal, then 

ST
M  is the identity matrix, and if 

SR TR
s s= , HST simplifies to a 

translation of the origin: 

   
ST

S ST S

x x x

y y y

z z z

  ∆     
      

= ∆ +      
       ∆      

H . 

ORMS 

ORMR 

ORMT 

HRT

 
HSR 

HST = HRT°HSR 
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Equation (10.2) and Figure 10.1 also apply to the 2D case. 

If the source ORMS is a time-dependent ORM for a spatial object, ORMS(t) shall denote the ORMS at time t, 

and ( )SR
tH  shall denote the similarity transformation from ORMS(t) to the object-fixed reference ORMR. If the 

similarity transformation ( )SR
tH  can be determined, it is a time-dependent affine transformation. For a fixed 

value of time t0, Equation (10.2) and Figure 10.1 generalize to ( ) ( )t t= �
ST 0 RT SR 0

H H H . The generalization to 

a time-dependent target ORMT(t) is ( ) ( )t t= �
ST 0 RT 0 SR

H H H . The generalization when both ORMs are time-

dependent at time t0 is ( ) ( ) ( )t t t= �
ST 0 RT 0 SR 0

H H H . 

EXAMPLE   ORMS(t) is the ORM EARTH_INERTIAL_J2000r0 at time t. ORMR is the Earth reference ORM 

WGS_1984. Because ORMS(t) and ORMR share the same embedding origin, the ( )t
SR

H  transformation is a (rotation) 

matrix multiplication operation (without translation). The matrix coefficients for selected values of t account for polar 

motion, Earth rotation, nutation, and precession. Predicted values for these coefficients are computed and updated weekly 
by the International Earth Rotation and Reference Systems Service (IERS) [IERS36]. See 7.5 for other examples of 
dynamic ORM reference transformations. 

10.3.3 Relating ORMs for different objects 

If a spatial object S exists in the space of another spatial object T, and if ORMR is the reference ORM for 
object T, and if the two objects are fixed with respect to each other, then HSR shall denote a similarity 
transformation from ORMS to ORMR. HSR is an affine transformation. If ORMT is an object-fixed ORM for the 
object T, then HST is given by Equation (10.2). The time dependent generalizations of Equation (10.2), defined 
in 10.3.2, are also applicable to this case. 

EXAMPLE   ORMS is an ORM for the space shuttle (as a spatial object). ORMR is the Earth reference 

ORM WGS_1984. When in orbit at time t, ( )t
SR

H  transforms positions with respect to ORMS to positions with respect to 

ORM WGS_1984. 

If a spatial object S does not exist in the space of another spatial object T, a similarity transformation between 
their ORMs is not intrinsically determined. However, if an invertible affine transformation (HSR) between ORMS 
and the reference ORM for object T is provided, then, given an object-fixed ORM for object T, ORMT, Equation 
(10.2) may be used to define an invertible affine transformation HST, from ORMS to ORMT. An important 
instance of this case occurs when S is an abstract object and T is a physical object (see 10.4.6). 

10.4 Operations to change spatial coordinates between SRFs 

10.4.1 Introduction 

Given a coordinate 
S
c  in a source SRF, SRFS, the change of SRF operation25 computes the corresponding 

coordinate 
T
c  in a given target SRF, SRFT. The general case of this operation is presented in formulations in 

10.4.2 for time-independent (static) and time-dependent (dynamic) ORM relationships. The specific SRF 
coordinate-systems CSS and CST impose restrictions on the applicability of the formulation because of CS 
domain/range constraints (see below). 

The formulations depend on the existence of a (static or dynamic) embedding transformation HST from ORMS 
to ORMT. If ORMS and ORMT have the same object space, HST is formulated in 10.3.2 in terms of ORM 
specification elements. In the case of different object spaces, HST must be explicitly provided (see 10.3.2). 

Special cases allow for simplifications that result in computational short cuts to the general change of SRF 
formulation. The case of matched normal embeddings (which includes the case ORMS = ORMT) is treated in 
10.4.3. Further specializations arise from combinations of specific coordinate-systems. Subclause 10.4.4 
treats combinations of celestiodetic with a map projection. 

                                                      

25 ISO 19111 defines this case as a coordinate operation. 
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The case for which CSS = CST and ORMS and ORMT differ26 does not generally produce a computational 
simplification. However, when both the source and target SRFs are based on the CS 
LOCOCENTRIC_EUCLIDEAN_3D, a simplification is produced and is presented in 10.4.5. This case is 
important for operations on directions, vectors, and orientations (see 10.5). 

An important special case of unrelated object spaces occurs when the source object space is an abstract 3D 
object space.  This special case is treated in 10.4.6.  

10.4.2 General case 

SRFS and SRFT are two object-fixed SRFs for a spatial object and p is a point in object-space that is in the 

coordinate system domains of both SRFs. 
S
c  denotes the coordinate of p in SRFS, and T

c  denotes the 

coordinate of p in SRFT. The determination of 
T
c  from 

S
c  is an operation involving the SRF pair (SRFS, SRFT). 

The most general form of the operation is: 

 
 ( )-1

T T ST S S
=c G H G c� �  (10.4) 

 
See Figure 10.2. CS generating and inverse generating functions are specified in Clause 5. 

 

 

Figure 10.2 — Change of SRF operation – applied to coordinates 

 
When HST is approximated with the Bursa-Wolf equation (see STT PV_7_PARAMETER Note 2), Equation 
(10.4) is known as the Helmert transformation.  

                                                      

26 ISO 19111 defines this case as a coordinate transformation. 

SRFS SRFT 

cS cT 
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If SRFS and SRFT are two celestiodetic SRFs with different ORMs for the same spatial object, Equation (10.4) 

transforms the coordinate ( )hλ ϕ=
S S SS
, ,c  with respect to one oblate ellipsoid to ( )hλ ϕ=

T T TT
, ,c  with respect to 

the other oblate ellipsoid. A transformation between two celestiodetic SRFs for the spatial object Earth is 
known as a horizontal datum shift. 

NOTE   A number of numerical approximations developed to implement horizontal datum shift have been published. 

Under the assumption of zero rotations and no scale differences, a widely used approximation27 to directly transform 

( )hλ ϕ=
S S SS
, ,c  to ( )hλ ϕ=

T T TT
, ,c  is the standard Molodensky transformation formula (see [83502T]).  

In the time-dependent case, Equation (10.4) may be generalized to: 

   ( ) ( ) ( )-1

T T ST S S
t t=c G H G c� �  

Equation (10.4) is only defined for a value of 
S
c  in the CSS domain if its corresponding position belongs to the 

CST range (the range of a generating function is the domain of its inverse generating function). If 
S

R  is the 

range of the generating function 
S

G  and 
T

R  is the range of the generating function
T

G , Equation (10.4) is only 

defined for 
S
c  in the set: 

 ( )( ) ( ){ }-1 -1

S S ST T S S ST S S T
 in | ( )  in R R D R∩ ≡G H c H G c  (10.5) 

 

If 
S
c  does not belong to this set, it is invalid for the operation in Equation (10.4). 

EXAMPLE SRFS is SRF GEOCENTRIC_WGS_1984 and SRFT is an instance of SRFT MERCATOR, with ORM 

WGS_1984. Equation (10.4) is not defined for any 
S
c  that is on the z-axis of SRFS, because the z-axis is not contained in 

the set in Equation (10.5). 

SRFT may optionally specify an SRF region 
T
V , and may optionally also specify an extended SRF region 

T
E  

(see 8.3.2.4). If 
T

D  is the domain of the generating function 
T

G , then 
T T T

V E D⊆ ⊆ . If 
T
c is computed using 

Equation (10.4), 
T
c is either within the SRF region ( )VT T

is in  c , or 
T
c  is within the extended SRF region but 

not within the SRF region ( )\E V
T T T
is in  c , or 

T
c  is within the CS domain but not within the extended SRF 

region ( )\D E
T T T
is in  c . 

 
In applications that functionally conform to an SRM profile, the domain of an SRF operation is restricted to the 
accuracy domain of the SRF as specified by that profile (see Clause 12). 

10.4.3 The matched normal embeddings case 

If both source and target ORMs are the same, or, more generally, if the reference transformations of ORMS 

and ORMT are equivalent (i.e., matched normal embeddings), 
ST

H  is the identity transformation.  

Consequently, Equation (10.4) simplifies to: 

 ( )-1

T T S S
=c G G c� . (10.6) 

EXAMPLE 1 If SRFS is a celestiodetic SRF (see 8.4) and SRFT is the celestiocentric SRF for the same ORM 

(ORMS = ORMT), then since the CS of the celestiocentric SRF is Euclidean_3D for which the 
-1

T
G  is the identity, Equation 

(10.6) reduces to the geodetic generating function: ( )=
T S S
c G c . 

                                                      

27 Historically it was thought that these approximations would require less computation than direct conversion. The 
perceived computational advantage may have been overcome by technology advances. New efficient algorithms for 
converting celestiocentric coordinates to celestiodetic coordinates have been developed that result in appreciably faster 
transformations without the attendant loss of accuracy. 
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If SRFT is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF 
(see 8.4), and SRFS is the induced zero height surface SRF, the promotion operation converts a surface 

coordinate 
S
c  in SRFS to a 3D coordinate in SRFT by setting the 1

st
 and 2

nd 
coordinate-components of 

T
c  to 

the 1
st
 and 2

nd
 coordinate-components of 

S
c  and setting the 3

rd
 coordinate-component, ellipsoidal height, to 0. 

Coordinate promotion is a special case of Equation (10.6). Applicable SRFs include those based on SRFT 
CELESTIODETIC, PLANETODETIC, and all map projection SRFTs.  

EXAMPLE 2 If SRFS is an induced surface celestiodetic SRF (see 8.4) and SRFT is the 3D celestiodetic SRF for the 

same ORM (ORMS = ORMT), Equation (10.6) promotes ( )λ ϕ=
S

,c  from a coordinate of CS type surface to ( )λ ϕ=
T

, ,0c  

a coordinate of CS type 3D.  

If SRFS is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF 
(see 8.4), and SRFT is the induced zero height surface SRF, the truncation operation converts a 3D 

coordinate 
S
c  in SRFS to a surface coordinate T

c , by setting the 1
st
 and 2

nd
 coordinate-components of 

T
c  to 

the 1
st
 and 2

nd
 coordinate-components of 

S
c . The point in object-space corresponding to 

S
c  and the point in 

object-space corresponding to 
T
c  are not the same point unless 0h = . Truncation, therefore, does not 

generally preserve location. 

EXAMPLE 3 If SRFS is a celestiodetic 3D SRF, the (induced) surface SRFT is the surface celestiodetic SRF for the 

same ORM.  The truncation operation associates ( )λ ϕ=
T

,c  to ( )hλ ϕ=
S

, ,c . 

10.4.4 Matched normal embeddings and map projection SRFs 

The CS generating function 
MP

G  for a an augmented map projection SRF is implicitly defined (see  5.8.6) by 

the composition of the generating function for the geodetic 3D CS generating function 
GD

G  with the inverse 

mapping equation ( )1 2
, ,Q Q h≡Q  as: 

   
MP GD

=G G Q� . 

If SRFS and SRFT are map projection SRFs for the same object, and the corresponding reference 
transformations are equivalent, then Equation (10.6) becomes: 

 ( ) ( ) ( )

( )

1

T , T T , S S S

1

T , T , S S S

GD GD

GD GD

−

−

=

=

c G Q G Q c

P G G Q c

� � �

� � �

 

(10.7) 
where: 

  

GD

GD

S

S

T

T

S

, S

T

T

, T

inverse mapping equations for SRF ,

generating function for the geodetic 3D CS for SRF ,

inverse mapping equations for SRF ,

mapping equations for SRF , and

generating function for 

:

:

:

:

:

Q

G

Q

P

G
T

the geodetic 3D) CS for SRF .

 

Furthermore, if ORMS = ORMT, then , S , TGD GD
=G G  and Equation (10.7) simplifies to: 

 ( )T T S S
=c P Q c� . (10.8) 

 

If SRFT is a celestiodetic SRF and ORMT = ORMS, Equation (10.6) simplifies to: 

   ( )T S S
=c Q c . 

Similarly, if SRFS is a celestiodetic SRF and ORMT = ORMS, Equation (10.6) simplifies to: 

   ( )T T S
=c P c . 
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10.4.5 Linear orthonormal 3D SRFs 

The special case of source and target SRFs based on the CS LOCOCENTRIC_EUCLIDEAN_3D is important 
for the treatment of directions, vectors, and orientations (see 10.5). Every linear orthonormal CS may be 
viewed as an instance of a CS LOCOCENTRIC_EUCLIDEAN_3D. If SRFS and SRFT are two such SRFs (see 

Table 8.11), and 
LE3D

F  is the CS LOCOCENTRIC_EUCLIDEAN_3D (see Table 5.9) generating function, 

LE3D
F  may be expressed in terms of the CS binding parameter vectors , ,q r s  in the form of the affine 

transformation: 

   

( )LE3D LE3D

1 1 1

2 2 2

3 3 3

u

v

w

u v w

r s t

u r v s w t

r s t

 
 

=  
 
 

= + + +

     
     

= + + +     
     
     

= +

F c F

q r s t

q

q R c

 

 
where: 
 

   

( )

1 1 1

2 2 2

3 3 3

, and

.

r s t

r s t

r s t

= ×

 
 

=  
 
 

t r s

R

 

 
The inverse generating function is expressed as: 

   1

LE3D

T

u u

v v

w w

−

      
      

= −      
      
      

F R q  

where: T  is the transpose of R R . 

If vectors 
S S S T T T
, , , , , and q r s q r s  are the CS binding parameters (see Table 8.11) for SRFS and SRFT 

respectively, then substituting the expression in Equation (10.3) for HST, Equation (10.4) specializes to: 

 ( )

( )( )

x

s s
y

s s
z

−=

= + −

  
   

= + − +   
   

  

� �

� �

1

T LE3D, T ST LE3D, S S

T ST S S S T

SR SR

T ST S T T ST S S

TR TR

ST

T

T T
.

c F H F c

R H q R c q

R M q q R M R c

 

(10.9) 

In the case that the corresponding reference transformations of ORMS and ORMT are equivalent, Equation 
(10.6) specializes to Equation (10.10): 

 
 

( )

( )

1

T LE3D, T LE3D, S S

T T

T S T T S S

−

=

= − +

c F F c

R q q R R c

�

�

. 

(10.10) 
 

10.4.6 Instantiating abstract space linear SRFs 

Engineering designs and abstract models are often intended for realization in the physical world.  
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EXAMPLE   A building plan is designed in the source SRFS, an abstract space LOCAL_SPACE_RECTANGULAR_3D 
SRF. A terrestrial site survey establishes the origin of the target SRFT, a LOCAL_TANGENT_SPACE_EUCLIDEAN SRF. 

Source coordinates are related to target coordinates by: ( ) ( ) ( )x y z s x y z= + ∆
T T T S S S
, , 1 , ,  where ( )s+ ∆1  is a scale factor. 

More generally, models are scaled, rotated, or otherwise transformed by an invertible matrix 3x3 W before a 
source coordinate is associated to a target coordinate. In many application domains, this similarity 
transformation is in the form: 

 

x x x

y y k y

z z z

∆

∆

∆

     
     

= +     
     
     T S

W  

where k s= + ∆(1 )  is the scale factor, ( )x y z
∆ ∆ ∆

 is the translation displacement vector, and W is a rotation 

matrix. In the computer graphics application domain this transformation is often represented in matrix 4x4 
form: 

 

x a a a x x

y a a a y y

z a a a z z

∆

∆

∆

    
    
    =
    
    
    

11 12 13

21 22 23

31 32 33

T S
1 0 0 0 1 1

, where 

a a a

a a a k

a a a

 
 

= 
 
 

11 12 13

21 22 23

31 32 33

.W  

This transformation between source and target coordinates may be viewed as an SRF coordinate operation 

from 
S
c  in SRFS, an abstract space LOCAL_SPACE_RECTANGULAR_3D SRF, to a coordinate T

c  in SRFT, 

a physical world LOCOCENTRIC_EUCLIDEAN_3D  SRF. 

In the notation of 10.4.5:  

   
( )

( )
S S S S

T T T T T

, and

.

=

= +

G c R c

G c q R c
 

Define an invertible affine transformation 
ST

H  as ( ) = + �
ST T T

H v q R Wv  (see 10.3.3). Substitute this 
ST

H  in 

Equation (10.4) and simplify: 

 ( )

( )( )

( )

=

= −

= + −

=

� �

� �

�

-1

T T ST S S

T ST S S T

T T T S S T

S S

T

T

c G H G c

R H R c q

R q R W R c q

W R c

 

(10.11) 

This illustrates that the transformation = �
T S S
c W R c  may be viewed as a change of SRF operation. 

NOTE   Equation (10.11) illustrates that digital graphic composite pattern modelling techniques such as SceneGraph 

trees that use scale and rotation matrices W together with translation operations at each tree node are special cases of 

Equation (10.4). See also 10.5.5 Example 2. 

10.5 Operations on directions, vectors, and orientations 

10.5.1 Introduction 

Specification of 3D directions, vectors, or orientations associated with a 3D SRF requires an underlying 3D 
vector space.  An SRF is either linear or curvilinear.  In the linear cases, the structure of the coordinate-space 
provides such a 3D vector space.  In particular, all lines through distinct points in a given direction n are 
parallel in both coordinate- and object-space. This shows that a linear SRF supports the translation invariance  
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of directions and vectors. A linear SRF will not preserve angular relationships between directions unless the 
associated abstract coordinate system (CS) is also orthonormal. In the orthonormal case, angles and 
distances are preserved. 

In the case of a curvilinear 3D SRF, the structure of the coordinate-space does not provide an underlying 3D 
vector space. To support curvilinear 3D SRFs, a method of associating a 3D vector space with any given 
reference point in the SRF shall be used.  This 3D vector space is termed the local tangent frame SRF at the 
reference point.  This association of a local tangent frame with a reference point is applied uniformly to both 
curvilinear and linear SRFs. 

The coordinate-space of an augmented map projection SRF (a map projection augmented with ellipsoidal 
height as a third dimension) appears to inherit the vector-space structure of R

3
, however, the vector properties 

of the (easting, northing, height)-coordinates do not carry over to object-space.  This is illustrated in part by 
the “up pointing” vector n = (0, 0, 1) that points in different spatial directions in object-space depending on the 
map coordinate location at which n is placed. 

In Figure 10.3, distinct position points p and q on the ellipsoid surface are projected to augmented map 
coordinates (s, t, 0) and (u, v, 0). Starting at these map coordinates, the coordinates one unit away in the “up 
direction” are (s, t, 1) and (u, v, 1), respectively. In an augmented map projection, these coordinates 
correspond to the position-space points p' and q'. The direction from p to p' is not the same as the direction 
from q to q'.  This shows that, in object-space, the "up direction" is relative to a reference point.   

 

 

Figure 10.3 — Coordinate-space and position-space directions compared 

A local tangent frame SRF, associated with a given reference point, shall be used to specify directions relative 
to that reference point. Such an SRF is defined by having its origin at the reference point and its axes given by 
the normalized vectors tangent to the coordinate curves passing through the reference point, as illustrated in 
Figure 10.4.  All linear and curvilinear CSs in this International Standard are orthogonal CSs, thus the local 
tangent frame is an orthonormal linear SRF.

(s, t, 0) 
coordinate-space 
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(u, v, 0) 



ISO/IEC 18026:2012(E) 

© ISO/IEC 2012 – All rights reserved 247

 

 

Figure 10.4 — Local tangent frame axes 

Figure 10.5 shows two local tangent frames at points p and q.  The local "up" directions may be specified as a 
direction in either local tangent frame.  Since directions are translation invariant in linear SRFs, conceptually 
the two local tangent frames may be translated to a common origin, as in Figure 10.6. 

 

Figure 10.5 — Local tangent frame axes at reference points p and q 
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Figure 10.6 — Direction vectors in the two local tangent frames using a common origin 
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To support the inter-conversion of directions, vector quantities28, and orientations between two SRFs, this 
International Standard uses the notions of reference point and local tangent frame.  Since there is neither an 
intrinsic SRF nor an intrinsic reference point in object-space, it is necessary to specify the reference point in 
order to be able to inter-convert the representation of directions, vectors, or orientations between two SRFs.  
This method of associating reference points and local tangent frames reduces the general problem of inter-
converting between two SRFs to that of inter-converting between two orthonormal linear spaces. 

10.5.2 Specification of local tangent frame SRF 

In this International Standard, a direction in a 3D29 SRFS is expressed as a combination of a unit vector and a 
reference coordinate. The unit vector is in a 3D linear orthonormal SRF, termed the local tangent frame at the 
reference coordinate, and is denoted by SRFL.  SRFL is uniquely defined for each reference coordinate using 
the unit vectors tangent to the coordinate-component curves at the reference coordinate.  

The local tangent frame SRFL at a reference coordinate c = (u0, v0, w0) in the interior of the domain of SRFS is 
specified by the SRFT LOCOCENTRIC_EUCLIDEAN_3D with ORM = ORMS and parameter values: 

 
 ( )0 0 0

1

1

2

2

, , ,

, and

u v w=

=

=

q G

v
r

v

v
s

v

 

(10.12) 

 
where:  

( )

( )

1

1

2

2

st

1 0 0 0

nd

2 0 0 0

0

0

d
,

d

d
,

d

 is the 1  coordinate-component curve at , , , and

 is the 2  coordinate-component curve at , , .

u u

v v

u

v

u v w

u v w

=

=

 
=  
 

 
=  
 

C
v

C
v

C

C

 

The vectors r and s are termed the local tangent vectors at c. Coordinate-component curves are defined in 
5.5.3.  

NOTE   The tangent vector to the 3
rd
 coordinate-curve at (u0, v0, w0) points in the same direction as the vector = ×t r s  

because of the coordinate-component ordering restriction specified in 5.6.4. 

When SRFS is a linear SRF, SRFL at reference coordinate (0, 0, 0) coincides with SRFS. In addition, the unit 
vector that represents the direction is independent of the reference coordinate used. Linear SRFs include 
those based on SRFTs CELESTIOCENTRIC, LOCAL_TANGENT_SPACE_EUCLIDEAN, 
LOCOCENTRIC_EUCLIDEAN_3D, and LOCAL_SPACE_RECTANGULAR_3D.  

10.5.3 Specification of direction 

A direction in an orthogonal CS based SRFS shall be comprised of: 

a) a coordinate c in the interior of the CS domain of SRFS, and 

b) a unit vector n in the local tangent frame at c. 

                                                      

28 Not necessarily a direction or a unit vector, but any vector of interest. 

29 All of the 3D SRFTs in this International Standard are based on orthogonal CSs. 
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The coordinate c is termed the reference coordinate of the direction and its corresponding position is termed 
the reference position for the direction. The vector n is termed the direction vector at c.  

NOTE   The local tangent frame at a coordinate is an instance of the SRFT LOCOCENTRIC_EUCLIDEAN_3D that 
provides a vector space setting for vector operations on direction vectors at c. 

EXAMPLE 1 If SRFS is a LOCOCENTRIC_EUCLIDEAN_3D SRF with SRF parameters q, r and s, and c is an SRFS 
reference coordinate, then local tangent vectors at c are equal to the SRF parameters r and s. If c = (0,0,0), then SRFL = 
SRFS. 

EXAMPLE 2 SRFS is an EQUATORIAL_INERTIAL SRF. This SRF is based on the EQUATORIAL_SPHERICAL CS. If 

( )0 0 0
, ,λ θ ρ=c  is a reference coordinate, then the local tangent vectors at c are: 

 

  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

λ λλ λ

θ θθ θ

ρ θ λ ρ θ λ ρ θ
λ λ

ρ θ λ ρ θ λ

λ λ

ρ θ λ ρ θ λ ρ θ
θ θ

==

==

= =

   
= =   

  

= −

= −

   
= =   

  

= −

1 2

1 2

1

1 0 0 0 0 0 0

0 0 0 0 0 0

1

0 0

1

2

2 0 0 0 0 0

00

00

 and 

where:

d d
cos cos , cos sin , sin

d d

cos sin , cos cos , 0 ,

sin , cos , 0 ,

d d
cos cos , cos sin , sin

d d

v v
r s

v v

C
v

v

v

C
v

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

ρ θ λ ρ θ λ ρ θ

θ λ θ λ θ

−

= − −

0 0 0 0 0 0 0 0

2

0 0 0 0 0

2

sin cos , sin sin , cos ,  and

sin cos , sin sin , cos .
v

v

 

 

EXAMPLE 3 SRFS is a CELESTIODETIC SRF. This SRF is based on the GEODETIC CS. If ( )hλ ϕ=
0 0 0
, ,c  is a 

reference coordinate, then the local tangent vectors at c are: 

  

( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )

λ λ

ϕ λ ϕ λ ϕ

λ ϕ λ ϕ ϕ

= −

= − −

= × =

0 0

0 0 0 0 0

0 0 0 0 0

sin , cos , 0 ,

sin cos , sin sin , cos , and 

cos cos , sin cos , sin .

r

s

t r s

 

In this example, SRFL is equivalent to a LOCAL_TANGENT_SPACE_EUCLIDEAN SRF with template parameter values 

0 0 F F 0
, , 0, 0, andλ λ ϕ ϕ α= = = = =x y h . 

EXAMPLE 4 SRFS is based on an augmented conformal map projection CS. If ( )0 0 0
, ,u v h=c  is a reference coordinate, 

and ( )hλ ϕ
0 0 0
, ,  is the corresponding celestiodetic coordinate, then the local tangent vectors at c are: 

( )

( )

( )

λ γ λ ϕ γ λ γ λ ϕ γ ϕ γ

λ γ λ ϕ γ λ γ λ ϕ γ ϕ γ

γ γ λ ϕ

= − + + −

= − − −

=

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

sin cos cos sin sin , cos cos sin sin sin , cos sin ,  and

sin sin cos sin cos , cos sin sin sin cos , cos cos

where:

,   the convergence of the meridian.

r

s  

In this example, SRFL is equivalent to a LOCAL_TANGENT_SPACE_EUCLIDEAN SRF with template parameter values 

λ λ ϕ ϕ α γ= = = = =
0 0 0 F F 0
, , , 0, andx y h . 

10.5.4 Changing the reference coordinate of a direction 

Given a direction represented with direction vector n1 at reference coordinate c1, the same direction may be 
represented at another reference coordinate c2 in the same SRF, with direction vector n2. The direction vector 
n2 is computed as: 

 



ISO/IEC 18026:2012(E) 

250 © ISO/IEC 2012 – All rights reserved

 

 
 

 

2 1

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

where: 

,

 and  are the local tangent vectors at ,  and

  for 1, 2.

i i i

i i i
i

=

• • • 
 

= • • • 
 • • • 

= × =

n R n
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r t s t t t

r s c

t r s

 

(10.13) 
 

The local tangent vectors are computed as in Equation (10.12). The matrix R  in Equation (10.13) is the 
direction cosine matrix of the local tangent frame at c2 with respect to the local tangent frame at c1 (see 
Equation (6.6)).  

If the SRF is based on a linear CS, then matrix R  is the identity matrix and n1 = n2. This implies that in a linear 
orthonormal SRF, a direction vector is independent of the reference coordinate. Thus, Equation (10.13) is only 
of interest in the case of a curvilinear SRF. 

10.5.5 Representing a direction in a different SRF 

Given a direction represented with direction vector nS at cS in SRFS, the same direction may be represented at 
reference coordinate cT, with direction vector nT in SRFT. If HST is the similarity transformation from ORMS to 
ORMT and MST is the matrix in the last term in Equation (10.3), then the direction vector nT is computed as: 

 

 

( )

( ) ( )
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T T
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 vectors at .
i
c

 

(10.14) 
 

Equation (10.14) is derived from Equation (10.9) by dropping the translation term since directions are 

translation invariant, and dropping the scale factor ( ) ( )SR TR
1 1s s+ ∆ + ∆ since nT is a unit vector. 

The rotation matrix 
ST

R  in Equation 10.14 is termed the orientation of SRFT at reference point cT, with respect 

to SRFS at reference point cS. The rotation matrix 
ST

R  is a generalization of the matrix in Equation (10.13) that 

accounts for the change of position-space between the source and target ORMs. 

EXAMPLE 1 SRFS is SRF GEODETIC_WGS_1984 and SRFT is SRF GEOCENTRIC_WGS_1984. With SRFS 

reference coordinate ( ) ( )hλ ϕ= = − π + π
S

, , 77 180, 38,88 180, 0c , the Washington monument, an obelisk, points 

approximately in the direction ( )=
S

0, 0, 1n  at cS. In this example, ORMS = ORMT so that MST is the identity matrix, and 

because SRFT is based on SRFT CELESTIOCENTRIC, T
R  is also the identity matrix. Consequently Equation (10.14) 

reduces to: 
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r s t

r s t

r s t

   
   

= = =  
   
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S,1 S,1 S,1

T S S S,2 S,2 S,2 S

S,3 S,3 S,3

0

0 .

1

n R n t  

Then using the expression in 10.5.3 Example 3 for t:  

 

( )

( ) ( ) ( ) ( ) ( )( )

( )

λ ϕ λ ϕ ϕ=

= − π π − π π π

= −

S 0 0 0 0 0
cos cos sin cos sin

cos 77 180 cos 38,88 180 sin 77 180 cos 38,88 180 sin 38,88 180

0,175 115 92 0,758 510 36 0,627 691 36 .

t

 

The resulting vector ( )= −
T

0,175 115 92 0,758 510 36 0,627 691 36n  is the direction vector in SRFT. 

Engineering designs and abstract models are often intended for realization in the physical world.  In such 
cases, the operation of changing the representation of direction vector nS in a linear SRF representing the 
abstract space to a direction vector nT in a linear SRF representing the physical object space is based on 
Equation (10.11). In the notation of 10.4.6:  

 
 

T S S

1
=n W R n
W

� . (10.15) 

 

Division by the determinant cancels any scaling by matrix W to ensure that nT is a unit vector. (The rotation 
matrix RS does not change the length of nS.) 

EXAMPLE 2 In ISO/IEC 18023-1, if an instance of the class <DRM Geometry Model Instance> has a component of 
class <DRM World Transformation>, that component specifies an invertible matrix W and a coordinate c in the <DRM 
Environment Root> SRF. If cS and nS are a reference coordinate and a direction vector in an associated 
LOCAL_SPACE_RECTANGULAR_3D <DRM Geometry Model>, and SRFT is the local tangent frame at c, then Equation 
(10.11) and Equation (10.15) may be used to compute cT and nT, respectively. The methods of 10.4.3 may be used to 
further change cT from SRFT to the <DRM Environment Root> SRF. This procedure to change <DRM Geometry Model> 
coordinates and directions to the environment root SRF is termed "model instancing".  

10.5.6 Representing a vector quantity in a different SRF 

Vectors combine a direction with a magnitude, and are used to describe a number of properties of moving 
objects, such as their velocities, accelerations and other quantities.  Similar to directions, vectors are defined 
with respect to the axes of a specific SRFL at a reference point. All properties and operations that apply to 
directions also apply to vectors.  

Given a vector quantity vS at reference location cS  in SRFS, it may be represented as vT at reference location cT  

in SRFT. If ST
R  is the orientation SRFS at reference point cS, with respect to SRFT at reference point cT, the 

vector vT is computed as: 

T ST S
v v= R  

Given a vector quantity vB in a body frame SRFB (or in general any linear orthonormal reference frame) whose 
orientation at a reference location cS in SRFS is known, that vector quantity may be represented as vT at 

reference location cT  in SRFT. If BS
R  is the orientation of SRFB at reference point cS, with respect to SRFS, the 

vector vT is computed as: 
T ST BS B
= R R�v v . 

10.5.7 Representing an orientation in a different SRF 

The orientation of an object E in 3D space specifies how a set of orthogonal axes attached to that object are 
aligned with respect to the axes of a specific orthogonal SRF (see 6.1). The orientation of an object specifies a 
rotation operation that would bring the SRF axes into alignment with the corresponding object axes (or vice 
versa). 



ISO/IEC 18026:2012(E) 

252 © ISO/IEC 2012 – All rights reserved

 

As with directions, orientations that are specified with respect to an SRF use the unique local tangent frame 
SRFL at a specified reference location (see 10.5.2). 

Given 
ES
,R  the orientation of an object E at reference location cS with respect to SRFS, the orientation of that 

object may be represented as 
ET
,R at reference location cT, with respect to SRFT.  If ST

R  is the orientation of 

the SRFS at reference point cS, with respect to SRFT at reference point cT, the orientation ET
R  is computed as: 

ET ST ES
=R R R� (see Equation (6.2)). 

10.6 Euclidean distance 

This International Standard supports an operation to return the Euclidean distance between two object-space 
locations using the coordinates of those locations in an SRF. 

If c1 and c2 are two coordinates in an SRF, and if G is the generating function of the CS of the SRF, the 
Euclidean distance dE between the corresponding points in object-space is given by: 

  ( ) ( ) ( )( )d d=c c G c G c
E 1 2 1 2

, ,  

where d is the Euclidean metric. 

10.7 Geodesic distance operations 

10.7.1 Introduction 

A curve on a smooth surface that has the property that any sufficiently small segment of it realizes the 
shortest distance on the surface between the segment’s two endpoints is termed a geodesic.  The formal 
definition of a geodesic is given in A.7.4. 

EXAMPLE 1   On a sphere, the equator, the meridians, and all other great circles are geodesics.  Likewise any segment 
of one of these curves is a geodesic.  No parallel of latitude except the equator is a geodesic.   

EXAMPLE 2   On an oblate ellipsoid, the equator is a geodesic, and the meridians are all geodesics.  All the other 
geodesics are curves which cross the equator at some non-right angle and wind around the ellipsoid between two parallels 

of opposite latitude (see Figure 10.7).  

Let points p1 and p2 lie on a smooth surface.  The shortest distance on the surface from p1 to p2 is the shortest 
arc length associated with any of the smooth surface curves that connect p1 to p2.  This distance is unique, but 
the curve that has this arc length may not be unique.  In particular, for the two pole points, every meridian is 
such a curve. 

EXAMPLE 3   On an oblate ellipsoid, let p1 be the point with surface geodetic coordinates (λ, φ) = (0°,20°) and let p2 be 
the point diametrically opposite, i.e., with surface geodetic coordinates (λ, φ) = (180°,-20°).  Then the shortest distance on 

the surface from p1 to p2 is twice the meridional quadrant, i.e., twice the length of a meridian from equator to pole.  But 

there are two distinct curves from p1 to p2 which have this number as their arc length – one passes through the north pole 

and the other passes through the south pole.  (Both are composed of segments of meridians). 

EXAMPLE 4   On an oblate ellipsoid with eccentricityε , let points p1 and p2 lie on the equator but be separated by a 

longitude difference that is less than π  and more than 2
1π ε− , an angle termed the “lift-off longitude”.  Then there will be 

two curves from p1 to p2 whose arc length is the shortest distance from p1 to p2 – one lying in the northern hemisphere, the 

other lying (symmetrically) in the southern hemisphere. 
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Figure 10.7 — Examples of geodesics 

If a curve lying on a smooth surface connects point p1 to point p2, and if that curve’s arc length is also the 
shortest distance from p1 to p2, then that curve is a geodesic. Thus, the arc length of the shortest curve 
connecting the two points is termed the geodesic distance. 

EXAMPLE 5   The two curves from p1 to p2 defined in Example 3 are geodesics. 

EXAMPLE 6   The two curves from p1 to p2 defined in Example 4 are geodesics. 

The converse is not true.  If a geodesic starts at point p1 and ends at point p2, its arc length may or may not be 
the same as the shortest distance on the surface from p1 to p2. 

EXAMPLE 7   Let points p1 and p2 lie on the equator of a sphere or oblate ellipsoid at longitudes 0° and 181°, 
respectively.  The segment of the equator from p1 to p2 that is continuous in longitude from 0° to 181° is a geodesic.  (All 

segments of the equator are geodesics).  However, its arc length is not the shortest distance on the surface from p1 to p2.  

Any curve which realizes the shortest distance on the surface from p1 to p2 has to lie within a single hemisphere of 

longitude. 

There are two problems of interest pertaining to geodesics on an oblate ellipsoid. In the first, termed the direct 
problem, a surface point, an azimuth, and a distance are given. The problem is to find a second surface point 
which terminates the (unique) geodesic whose initial point is the given point, whose initial forward azimuth is 
the given azimuth, and whose arc length is the given distance.  Also to be found is the geodesic’s terminal 
forward azimuth.  The details are given in 10.7.3.   

In the second problem, termed the indirect problem, two distinct surface points are given.  The problem is to 
find the shortest distance on the surface between the two given points, and find the set of curves (which will 
be geodesics) whose arc lengths equal this shortest distance.  In addition, the initial and terminal forward 
azimuths of each curve is to be found.  The details are in 10.7.4. 

This International Standard supports the geodesic operations for SRFs based on SRFT CELESTIODETIC, 
PLANETODETIC, and all map projection SRFTs. 
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Given two surface coordinates c1 and c2 of points p1 and p2, respectively, the geodesic distance operation: 

 ( )G
s d=

1 2
,c c  

is defined as the indirect problem for (λ1, ϕ1) and (λ2, ϕ2) where (λ1, ϕ1) is the surface geodetic coordinate for 

c1 and (λ2, ϕ2) is the surface geodetic coordinate for c2. 

An extended version of this operation provides the forward azimuth value α1 at c1 and the forward azimuth 

value α2 at c2: 

 { } ( )GI
s dα α =

1 2 1 2
, , ,c c . 

The geodesic destination operation requires a starting point c1, a forward azimuth value α1, at c1 and a positive 

distance s. It returns the destination point c2 and the forward azimuth value α2 at c2: 

 { } ( )GD
d sα α=

2 2 1 1
, , ,c c  

where { (λ2, ϕ2), α2} is the direct problem solution for input parameter values {(λ1, ϕ1), α1, s}. 

There is a large body of literature concerning computational techniques to solve the direct and indirect 
problems.  In the interest of accuracy and computational efficiency, many of these computational techniques 
treat the problems by sub-cases -- short lines, long lines, intermediate length lines, and other caveats and 
exceptions.  Each of these has been optimized in a way that is appropriate for the intended application or user 
domain. For purposes of this International Standard, a recently published treatment ([ROL10]) that has one 
mathematical formulation to cover all cases is utilized. 

10.7.2 Auxiliary functions 

The treatment of the direct and indirect problems in 10.7.3 and 10.7.4 require the auxiliary functions defined in 
this subclause. 

An important characteristic of a geodesic on an oblate ellipsoid is that the quantity termed the (non-metric)  
Clairaut constant and defined by: 

 
( ) ( )

( )
c

α ϕ

ε ϕ

=

−
2 2

sin cos

1 sin

 

 

has a constant value at every point on a given geodesic, where (λ, ϕ) is the coordinate of a point on the 

geodesic and α is the azimuth of the curve at that point. 

The mathematics required to solve the direct and indirect problems involves the use of elliptic integrals. The 

incomplete elliptic integral of third kind is defined for real , ,n θ and ,m with 2
1m <  as:  

( )
( )2 20

, ,
1 sin 1 sin

d
P n m

n m

θ ξ
θ

ξ ξ
=

− −

∫ . 

 

The treatment in [ROL10] defines two auxiliary functions: a longitude difference function ( )1 2
L , ,c θ θ  and an arc 

length function ( )1 2
A , ,c θ θ  that are defined for all values of 

1
,c θ  and 

2
θ  by: 
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( )

( )
( ) ( )( )

( ) ( )
c

c
c P k k P k k c

c

c

ε
θ θ θ ε θ ε

ε

θ θ θ θ
+

→

−

= − ≠

−

=

2

2 2 2 2 2 2

1 2 2 1
2 2

1 2 1 2
0

1
L , , , , , , , 0

1

L 0, , lim L , ,

. 

(10.16) 

 
and 

 
 ( )

( )
( ) ( )( )

a

c P k k P k k

c

ε

θ θ ε θ ε ε θ ε

ε

−

= −

−

2

2 2 2 2 2 2 2 2

1 2 2 1
2 2

1
A , , , , , ,

1
. (10.17) 

 
where   

       
2

2

2 2

1

1

c
k

c ε

−

=

−

. 

 

10.7.3 The direct problem 

Given an oblate ellipsoid with major semi-axis a and eccentricityε , let p1 be a non-polar point on the ellipsoid 

given by its surface geodetic coordinates (λ1, ϕ1).  Let a geodesic be defined with p1 as its initial point, α1 as its 
initial forward azimuth, and arc length s . This geodesic will terminate at a point p2. 

The direct problem requires finding the surface geodetic coordinates (λ2, ϕ2) of p2 and the forward azimuth α2 

of the geodesic at the point p2.  The quantity 2
α + π  is termed the back azimuth at p2 as it points backwards 

toward p1. 

The given parameters are restricted to sϕ απ π− < < − π < ≤ π, > .
2 21 1

,  and 0  

The functions ( )1 2
L , ,c θ θ and ( )1 2

A , ,c θ θ are used to solve the direct problem. 

The given values in the direct problem (λ1, ϕ1) and α1 determine c, 

 
( ) ( )

( )
c

α ϕ

ε ϕ
=

−

1 1

2 2

1

sin cos

1 sin
. 

Then, 

 

( )

( )

( )

c

k

c k k k

λ λ θ θ

ϕ θ

α θ ε θ

= +

=

= − −

2 1 1 2

2 2

2 2 2

2 2 2

L , , ,

arcsin sin ,  and

arctan2 1 sin , 1 sin

 

 where  

( )( )
c

k k
c

θ ϕ
ε

−
= = ±

−

2

1 1 2 2

1
arcsin sin , ,

1
1

0 if and 0 otherwise,k kα
π

≥ ≤ <
2

 and  

2
θ  is determined by: 

  ( )s c θ θ=
1 2

A , , . (10.18) 
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Equation 10.18 has a unique solution for 
2

θ .  Reference [ROL12] gives the following Newton-Raphson 

iteration, which rapidly converges to the solution: 

 

 

[ ]

( )

[ ] [ ]

( )
[ ]( ) [ ]( )( )n n n n

s

c

c
k c s

a

θ θ

ε
θ θ ε θ θ θ

ε

+

π
= +

π

 −
 = − − −
 − 

1

2 1

2 2
3 2

1 2 2

2 2 2 1 22

,
A ,0,

1
1 sin A , , .

1

 

10.7.4 The indirect problem 

Given an oblate ellipsoid with major semi-axis a and eccentricityε, let p1 and p2 be two points on the ellipsoid 

given by their surface geodetic coordinates (λ1, ϕ1) and (λ2, ϕ2).   

The indirect problem requires finding the shortest distance s on the ellipsoid from p1 to p2.  Further, for each 

curve from p1 to p2 whose arc length is s, it is required to find the forward azimuths α1 and α2 at the points p1 
and p2 respectively.  (Such curves will be geodesics, and there will be 1, 2, or infinitely many of them.) 

The given parameters are restricted to λ λ ϕ ϕπ π π π−π ≤ − ≤ π, − ≤ ≤ − ≤ ≤ .
2 2 2 22 1 1 2

, and  

The solution to the indirect problem can be determined once c, the Clairaut constant for the solution geodesic 
curve segment, is found. Dealing with the extreme c values 0 and 1 separately simplifies the process. 

The single meridional case: c = 0 if 
2 1

λ λ= or if either point is a pole ( ϕ ϕπ π

2 2
= =

1 2
 or ). Then if ϕ ϕ<

1 2
, the 

solution is: 

 ( )1 2 1 2
andA 0, , ,   0.ϕ ϕ α α= = =s  

Otherwise 
1 2
φ φ> , and the solution is: 

 ( )2 1 1 2
andA 0, , ,   .ϕ ϕ α α= = = πs  

If either point is a pole, the azimuth at that point is undefined. The solution geodesic curve segment is unique 
unless both given points are poles. In that case the solution set is the infinite set of all meridians. 

Meridional segments joined at pole: c = 0 if 
2 1

λ λ= ± π  andϕ ϕ≥ −
2 1

. Then 

 ( )s ϕ ϕ α α= π − = = π
1 2 1 2

A 0, , ,  0,   

and the geodesic curve segment passes through the north pole.  

Similarly, c = 0 if 
2 1

λ λ= ± π  andϕ ϕ< −
2 1

. Then 

 ( )s ϕ ϕ α α= − − π = π =
1 2 1 2

A 0, , ,  , 0  and the geodesic curve segment passes through the south pole. 

Equatorial segment: c = 1 if ϕ ϕ= =
1 2

0  and 2

2 1
0 λ λ ε< − ≤ π 1− . Then 

 
2 1 1 2 1 2 1 2

and and otherwise,    if    .λ λ α α α α α α
π π

2 2
= − = = < = = −s a  

The solution is unique. 
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Near-antipodal equatorial segment: If ϕ ϕ= =
1 2

0  and the points are separated by more than the lift-off 

longitude ( 2

2 1
ε λ λπ 1− < − < π ), then c is determined by solving the equation: 

 ( )2 1
L ,0,cλ λ− = π  in the interval 0 1.c≤ ≤  

Assuming 
1 2

,λ λ< the solution parameters are then given by: 

 ( ) ( )1 2 1
andA ,0, , arcsin ,  α α α= π = = π −s c c . 

This geodesic curve segment lies in the northern hemisphere. A second solution lies in the southern 
hemisphere in north-south symmetry. 

Prograde typical: The remaining cases may be reduced to the prograde typical case of 
2 1

0 λ λ< − < π  and 

ϕ ϕ≥ ≠
2 1

0 . 

 Define c
ϕ

ε ϕ
=

−

2

max
2 2

2

cos

1 sin
and L c

ϕ
λ

ϕ

   π
=    2  

1

crit max

2

sin
, ,
sin

. 

Then c may be determined by an iterative solution of the equation: 

 ( ) ( )( )2 1 1 2
L , ,c c cλ λ θ θ− =  in the interval 

max
0 ,c c≤ ≤  

where 

 ( ) ( ) ( )( ) ( )
c

c k c k c
c

θ ϕ
ε

−

= =

−

2

1 1 2 2

1
arcsin sin , ,

1
 and 

 ( )

( ) ( )( )

( ) ( )( )

k c

c

k c

ϕ λ λ λ

θ λ λ λ

ϕ λ λ λ

 − <


= π 2 − =
π − − >

1 2 1 crit

1 2 1 crit

1 2 1 crit

arcsin sin , if 

, if 

arcsin sin , if 

. 

The solution parameters are determined by c: 

 

( ) ( )( )

( )( )
( )( )

s c c c

c k c c

c k c c

θ θ

α ε ϕ ϕ

α ε ϕ ϕ

=

= − −

= − −

1 2

2 2

1 1 1

2 2

2 2 2

A , , ,

arctan2 1 sin , 1 cos ,  and

arctan2 1 sin , 1 cos .

 

NOTE   Extremely small values of c can cause numerical instability in some implementations. Alternative methods to 

evaluate ( )c θ θ
1 2

L , , in this and other difficult cases are treated in [ROL12]. 

Other prograde cases: If 
2 1

0 λ λ< − < π  and cases above do not apply, a new pair of points p3 and p4 that 

satisfy the prototypical case constraints can be specified using parameters from the given pair p1 and p2. The 
indirect problem solution for points p3 and p4, the shortest distance between them s� , and the forward azimuths 

α α
3 4
and will determine the solution for p1 and p2 as follows: 
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       If ϕ ϕ≤
2 1

, let p3 = (λ1, ϕ2) and p4 = (λ2, ϕ1).  Then 1 4
α α= π −  and

2 3
α α= π − .  

       If ϕ ϕ≤ −
2 1

, let p3 = (λ1, -ϕ2) and p4 = (λ2, -ϕ1).  Then 1 4
α α=  and

2 3
α α= .  

       If ϕ ϕ≤ −
1 2

, let p3 = (λ1, -ϕ1) and p4 = (λ2, -ϕ2).  Then 1 3
α α= π −  and

2 4
α α= π − . 

In all these cases the arc length solution is the same, s s= � , and the value of c and the multiplicity of shortest 

geodesic segments are also the same.  

Retrograde cases: A retrograde case,
2 1

λ λ< , is converted to a prograde case with p3 = (λ2, ϕ1) and p4 =(λ1, 

ϕ2).  Then 1 3
α α= − , 

2 4
α α= − , and s s= � . The value -c from prograde case is the retrograde solution value for 

c and the multiplicity of shortest geodesic segments are the same. 
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