

Technical Concepts

Orientation, Rotation, Velocity and Acceleration,
and the SRM

Version 2.0

20 June 2008

Author:

Paul Berner, PhD

Contributors:

Ralph Toms, PhD, Kevin Trott, Farid Mamaghani, David Shen,
Craig Rollins, Edward Powell, PhD

Copyright © 2008 SEDRIS

Table of contents
1 Introduction ..1

1.1 Prerequisites..1
1.2 Notation ...2

2 Vectors, directions, axes and their uses ..3
2.1 Vector space directions ...3
2.2 Vector directions in the SRM...4

3 Orientation..6
3.1 Orientation and rotation ...7
3.2 Representing rotations ..9

3.2.1 Axis-angle vector rotation ...10
3.2.1.1 Rodrigues’ rotation formula...10
3.2.2 Principal rotations ...11
3.2.3 Euler angles ..11
3.2.3.1 Euler angles in the - -z x z convention ...12
3.2.3.2 Euler angles in the - -x y z convention (Tait-Bryan angles)........................14

3.2.3.3 Gimbal lock ...16
3.2.4 Rotation and orientation matrices ...17
3.2.4.1 Euler angle - -z x z convention matrix factorization18
3.2.4.2 Tait-Bryan angles matrix factorization...21
3.2.5 Quaternions ..25
3.2.5.1 Quaternion notations and conventions ...25
3.2.5.2 Quaternion algebra ...26
3.2.5.3 Quaternion operators on 3D Euclidean space ..28
3.2.5.4 Quaternions in matrix forms..29
3.2.6 Representation summary..30

3.3 Performing a rotation on an arbitrary point (formulae)...31
3.3.1 Rotation about the origin...31
3.3.2 Rotation about another point...31

3.4 Inter-converting between representations (formulae)..32
3.4.1 Euler angle convention to matrix...32
3.4.2 Matrix to axis-angle...32
3.4.3 Axis-angle to rotation matrix ...33
3.4.4 Axis-angle to quaternion ...34

 ii

3.4.5 Matrix to quaternion ..34
3.4.6 Quaternion to matrix ...35
3.4.7 Quaternion to axis-angle...36
3.4.8 Matrix to Euler angle convention...37
3.4.9 Euler angle convention to quaternion ...37
3.4.10 Quaternion to Euler angle convention...39

3.5 Considerations for computational and storage efficiency40
3.6 Interpolation issues..41
3.7 Error analysis...42

4 Rotational kinematics ...43
4.1 Rotational velocity and acceleration ..43
4.2 Orientation (Ω), angular velocity (ω), and angular acceleration (α)45

5 Rigid body dynamics ..47
6 Use cases ..52

6.1 DIS Euler angles..52
6.2 Rigid body integration of state ...53

7 References...55
Appendices ...56
Appendix A – Properties of the vector cross product ..56
Appendix B – Derivation of Rodrigues’ rotation formula ...57
Appendix C – Quaternion operators on 3D Euclidean space derivation59
Appendix D – Moment of inertia..60
Appendix E – Matrix to axis-angle derivation ..61
INDEX ...64

 iii

Acknowledgements

This document was developed by the SEDRIS Organization as part of the effort to
include a more comprehensive treatment of orientation in the SRM
implementation, and in support of the requirements of the Test & Training
Enabling Architecture (TENA) project.

The helpful suggestions and feedback from TENA developers, under the auspices
of Dr. Ed Powell, were invaluable in developing the scope and in refining the use
cases described in this document. Furthermore, the software implementations of
the concepts in this document and the refinement of the corresponding
application program interface (API) were greatly benefited by the feedback from
the TENA development team. In particular, the many contributions of Mr. Terry
Burks (Trideum Corp) during the development of the interface and the testing of
the implementations of the API were critical in the completion of this effort.

The participation of Mr. Craig Rollins (National Geospatial-Intelligence Agency) in
this effort has been essential and invaluable. In addition to his insightful feedback
and critical reviews of this document, he expended significant effort in the
development of independent test data used to verify the correctness of the
implementations.

The software design and implementations of the algorithms, along with the
development of a complete suite of testing and verification of the
implementations, were developed and produced by Mr. David Shen (SAIC). In the
course of this effort, he identified various errors in the formulations and made
numerous critical suggestions and contributions.

The practical use of the API is further described in a separate and comprehensive
document, produced by Mr. Kevin Trott (Northrop Grumann), entitled "User's
Manual for SRM Orientation, Velocity, & Acceleration Transformations".

Paul Berner
Ralph Toms
Kevin Trott
Farid Mamaghani

 iv

1 Introduction
One of the characteristics of the SRM1 (ISO/IEC 18026:2006(E)) that distinguishes it
from many other treatments of spatial referencing is the definition of the concept of
direction in linear and curvilinear 3D spatial reference frames and the explicit
methodology to convert direction representations from one spatial reference frame to
another spatial reference frame. Intrinsic to that methodology is the use of orientation
operations. Orientation and rotation operators are also important in operating on the
vector representation of physical phenomena. These types of operations are important
for a significant sector of the intended user domain of the SRM. With the intent to
leverage the SRM treatment of the direction concept, this document explores the
orientation/rotation operator subject matter domain. In presenting these concepts in a
consistent and well defined manner, a framework is laid out to allow the future expansion
of the SRM API to explicitly deal with the orientation concept. To this end, this document
reviews the rotation/orientation concept in relation to the SRM. In particular, various
representations of orientation and rotation and the methods of converting between them
are presented.

Many concepts discussed here have been in wide use from the time of Euler's work on
the subject. As a result, there are many similar but different treatments in the literature.
In particular, there are similar terms with different meanings and, in some cases, the
differences are subtle. There are also many differences in notational conventions. For
this reason an attempt has been made to provide self contained derivations (assuming
the prerequisites) of most of the formulations and algorithms presented here. By
following the derivations there should be no mistake as to the intended meanings of the
results. To improve the flow of the text, parts of lengthier derivations have been
relegated to appendices. The formulation of these concepts as presented here may be
incorporated in a future version of the SRM.

1.1 Prerequisites

This document assumes that reader is familiar with the following prerequisite subject
matter:

• Linear algebra

o Vector spaces concepts including:

 linear operators,

 vector dot and cross products

o Matrix algebra

• Calculus, and

• Elementary Physics

o Rigid body kinematics and dynamics.

1 See references [1].

 1

See also reference [1] Annex A – Mathematical foundations.

1.2 Notation

The coordinate representation of a three dimensional (3D) vector with respect to a

basis is a column vector . To compactly denote a coordinate in a line of text,

the transpose is used .

u
1

2

3

u
u
u

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u

()1 2 3, ,u u u=u T

)In this section, let and be two 3D vectors. ()1 2 3
T, ,u u u=u (1 2 3

T, ,v v v=v

The Inner product or dot product or scalar product of 3D vectors u and v is denoted and
defined as:

1 1 2 2 3 3

T u v u v u v• = = + +u v u v (0.1)

The norm or length of a vector u is defined as:
 = •u u u (0.2)

If θ is the angle between two vectors u and v then:
 ()cos θ• =u u u v (0.3)

The outer product of 3D vectors u and v is denoted ⊗u v and defined as:

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

T
u v u v u v
u v u v u v
u v u v u v

⎛ ⎞
⎜ ⎟⊗ = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

u v uv

(0.4)

Note that:
 () 1 1 2 2 3 3Trace u v u v u v⊗ = + + = •u v u v (0.5)

The vector product or cross product of 3D vectors u and v is defined as:

 ()2 3 3 2 3 1 1 3 1 2 2 1
T, ,u v u v u v u v u v u v× = − − − = uu v S v (0.6)

where:

3 2

3 1

2 1

0
0

0

u u
u u
u u

− +⎛ ⎞
⎜ ⎟= + −⎜ ⎟
⎜ ⎟− +⎝ ⎠

uS

is the skew-symmetric matrix associated with a vector . u

 2

See Appendix A for some useful properties of the cross product.

The 3D identity matrix is denoted as:

3 3

1 0 0
0 1 0
0 0 1

×

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

I

(0.7)

The 3D zero vector is noted as:

 T(0,0,0)=0 (0.8)

The two argument form of arctangent, ()arctan2 ,y x , returns a value adjusted for the

quadrant of the point () and ,x y,x y . Given real numbers

()

2 2

arctan2 ,
where: is the unique value satisying , and

if 0,
0, else

if 0,
cos and sin .

where:

.

y x

r

r
x r y r

r x y

θ

θ θ

θ

θ θ

=

− π < ≤ π
=
=
>
= =

= +

2 Vectors, directions, axes and their uses

2.1 Vector space directions

A direction in a Euclidean vector space may be represented as a unit vector. That is, a
vector n of length 1. Any non-zero u vector may be normalized to a unit vector n by
dividing by the norm of the vector:

 ()T1 , if 0,0,0= ≠n u u
u

.

Any positive multiple of a unit vector points in the same direction. By requiring unit
vectors, each direction has a unique vector representation.

 Directions have many application specific uses. For example, a velocity is a direction
multiplied by a speed. Force and momentum acting on the center of mass of a body
may be similarly represented.

A direction can be used to specify the axis of a rotating body. The axis of a rotating
body lies on a line. By specifying the line as a direction, the right hand rule can be used

 3

to unambiguously identify which of the two axial rotational directions is acting on the
body. Torque and angular momentum acting on a body may be similarly represented.

2.2 Vector directions in the SRM

In the Spatial Reference Model (SRM), the underlying vector space that is associated
with a 3D Spatial Reference Frame (SRF) is determined by the Object Reference Model
(ORM) of the SRF. For example, the underlying 3D vector space of any 3D SRF based
on ORM WGS84 corresponds to the WGS84 geocentric SRF. This associated 3D
Euclidean space is called the object-space of the ORM.

An SRF associates unique coordinates in a domain of the coordinate-space (of
coordinate-component-tuples) to corresponding points in object-space. In the special
case of a geocentric SRF, the object-space and coordinate-space are indistinguishable2.
In general, an SRF is either linear or curvilinear. In the linear cases, the vector-space
structure of coordinate-space carries over to object-space. In particular, lines through
points in a given direction n are all parallel in both coordinate- and object-space. This
shows that a direction is translation invariant in a linear SRF. A linear SRF will not
preserve angular relationships between directions unless the associated abstract
coordinate system (CS) is also orthonormal. In the orthonormal case, angles and
distances are preserved.

In the case of a curvilinear SRF, the vector-space structure of the coordinate-space does
not carry over3. The coordinate-space of an augmented map projection SRF (a map
projection augmented with ellipsoidal height as a third dimension) appears to inherit the
vector-space structure of R3, however, the vector properties of the (easting, northing,
height)-coordinates do not carry over to object-space. This is illustrated in part by the
“up pointing” vector n = (0, 0, 1) that points in different spatial directions (in object-space)
depending on the map coordinate location from which n is viewed.

In Figure 1, distinct position points p and q on the ellipsoid surface are projected to
augmented map coordinates (s, t, 0) and (u, v, 0). Starting at these map coordinates, the
coordinates one unit away in direction n are (s, t, 1) and (u, v, 1) respectively. In an
augmented map projection, these coordinates correspond to the position-space points p'
and q'. The direction from p to p' is not the same as the direction from q to q'. This
shows that the "up direction" is relative to an observation or reference point.

For each reference point, the SRM defines a uniform method for associating a unique
orthonormal linear SRF to each reference point coordinate. This associated linear SRF
will be used to specify a direction as "seen" from the reference point. This SRF is called
the local tangent frame at the reference point. This SRF is defined by as having its
origin at the reference point and axis directions given by the normalized tangent vectors
to the coordinate curves passing through the reference point as illustrated in Figure 2.

2 This assumes a common unit of length. The SRM requires the metre as the common unit of
length.

3 In the curvilinear case, even the coordinate domain is not the entire space of n-tuples.

 4

All curvilinear SRFs in the SRM are orthogonal so that the local tangent frame will be an
orthonormal linear SRF.

(u, v, 1) (s, t, 1)

(s, t, 0) coordinate-space

 p'
q'

(u, v, 0)

 p q
object-space

Figure 1 – Directions in an augmented map projection SRF

Reference
point

 x

 y

z

Coordinate curves

Local tangent frame axes

Figure 2 – Local tangent frame axes

Continuing the augmented map projection example, Figure 3 shows the local tangent
frames axes (x and z-axes) at points p and q. The local "up" directions may be specified
in either local tangent frame. Since directions are translation invariant in linear SRFs,

 5

we may conceptually translate the two local tangent frames to a common origin as in
Figure 4.

object-space
 p

 p'
 q'

q

 z

 x

 x

 z

~

~

Figure 3 – Local tangent frame axes at p and q

 p' - p
 x

 z
 q' - q

 z

 x ~

~

Figure 4 – Direction vectors two local tangent frames

In the SRM, a Direction data type consists of the coordinate of a reference point in a
given SRF and a 3-tuple unit vector in the local tangent frame at the reference point.
Since there is neither an intrinsic SRF nor an intrinsic reference point in object-space, it
is necessary to specify the reference point in order to be able to inter-convert between
SRF representations of a given direction. The SRM approach of associating reference
points and local tangent frames thus reduces the general problem of inter-converting the
representation of a direction between two SRFs to that of inter-converting between two
orthonormal linear spaces. This methodology generalizes to the problem of inter-
converting any vector quantity4 between a pair of linear spaces. The treatment given
here of this general problem begins with the notion of orientation.

3 Orientation
Consider two orthonormal bases for 3 dimensional Euclidean space and .
An orientation is an expression of the axis directions of one basis with respect to the
other. To illustrate this notion, consider an aircraft at time t

, ,x y z , ,x y z% % %

0 aligned with one basis: the
center of mass of the airplane is at the vector space origin, the fuselage points in
direction x, the starboard wing points in direction y, and (to complete a right handed
system) z points down with respect to the aircraft (see Figure 7 below). At some later
time t1 the airplane is subjected to a roll, pitch, and/or yaw. We subtract the vector that

4 Not necessarily a direction or a unit vector, but any vector of interest.

 6

represents the displacement of the center of mass from time t0 to time t1 and the new
directions for the fuselage, starboard wing, and relative down define the
directions. The two vector spaces spanned by bases

, ,x y z% % %

, ,x y z , ,x y% % %

, ,x y z% % % , ,x y

 and share the same
origin and are thus two bases for the same vector space. The only difference is that

has a different orientation with respect to . Orientation is also called
attitude in some contexts.

z

z

3.1 Orientation and rotation

Let be a point in 3 dimensional Euclidean space. Let r E denote that vector space with
orthonormal basis , ,x y z , and let E%
x y z r

3
T

where, , , r r r r r r= =r r x z
T

+ +y z

 denote that vector space with orthonormal basis
. The coordinate representation of with respect to each basis, ,% % % 5 is:

 , and

 .

()1 2 3 1 2+ +y

()1 2 3 1 2 3where, , , r r r r r r= =r r x% %% % % % % % %

This coordinate transformation from E to E% is denoted () ()r r r→ % % % %a 1 2 3, ,E EΩ

r
r
r

r r r1 2 3: , , .
This is a linear transformation and can thus be realized as a matrix multiplication:

1 1 11 12 13 1

2 2 21 22 23 2

3 3 31 32 33 3

r r a a a
r r a a a
r r a a a

→

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

E EΩ %

%

%

%

 where:

1311 12

21 22 23

31 32 33

, ,
, ,
, ,

aa a
a a a
a a a

= •= • = •

= • = • = •

= • = • = •

z xx x y x
x y y y z
x z y z

y
z z

%% %

% %

% % %

%

, ,x y z , ,x y z% % %

, ,x y z% % % , ,x

(1.1)

Since the basis vectors are unit vectors, each dot product in equation (1.1) is the cosine
of the angle between the two vectors (see Equation (0.3)). For this reason this matrix

is the called direction cosine matrix. Note that the columns of the matrix are

the basis vectors in coordinate representation while the rows (or columns
of the transpose matrix) are the basis vectors in

ija⎡ ⎤⎣ ⎦

y z

 coordinate
representation.

5 For any orthonormal basis, , ,x y z , the basis coefficients may be computed as:

1 2 3, ,r r r= • = • = •r x r y r z .

 7

Euler’s rotation theorem states that this linear transformation is a rotation operation. In
particular, the matrix has a unit eigenvector and three eigenvalues: 1,n ,e ei iθ θ+ −

n
. The

line spanned by the vector is fixed under the transformation and represents the axis of
rotation. The angle of rotation is given by θ . Let ()θnR denote the rotation about

vector through angle n θ .

Euler’s rotation theorem thus shows that orientation and rotation are just two ways of
viewing the same transformation. These two ways are closely related, but are not
equivalent. Consider Figure 5. On the left side, the point r is rotated by angle θ about
the z-axis (which points directly toward the reader) to a new position r'.

The coordinates of these two points, () (1 2 3 1 2 3
T T, , , and , ,r r r r r r)′ ′ ′ ′= =r r are related by

the following matrix.

 . ()
1 1

2 2

3 3

cos sin 0
sin cos 0

0 0 1

r r
r r
r r

θ θ
θ θ θ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

zR
1

2

3

r
r
r

′

Figure 5 – Rotation and orientation

The right side of the figure shows a second basis whose orientation with respect to the
first basis is a rotation by angle θ about the z-axis. In this case (Figure 5), let

()θzΩ denote the orientation
→E EΩ % . The coordinates of the single point r are related

by the direction cosine matrix for this case.

 . ()
1 1

2 2

3 3

cos sin 0
sin cos 0
0 0 1

r r
r r
r r

θ θ θ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

zΩ
%

%

%

1

2

3

r
r
r

θ θ

~

y-axis y-axis

x-axis

r

r1

r2

x-axis

r

r1

r2

r'

r1'

r2'

θ

x-
~

y-
~ axis axis

~
r

1

θ

r2
Rotation Orientation

 8

Notice that matrices corresponding to the left and right figures are not the same:

() () () () 3 3, and θ θ θ θT
×=z z z zR Ω Ω R I= . So while both cases, the rotation of a point,

and the orientation of one coordinate system with respect to another, involve the same
axis of rotation and the same angle of rotation, the corresponding linear operations are,
in fact, the inverses of each other. We shall call an operator that performs a rotation,
such as the operator on the left side of Figure 5, a rotation operator and an operator that
changes coordinate system directions, such as on the right side of the Figure, an
orientation operator.

Note that to transform a coordinate from the E% coordinate system back to the E
coordinate system, the rotation matrix may be used as the inverse operator:

 () ()
1 1

2 2

3 3

1
r r
r r
r r

θ θ−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

z zΩ R
% %

% %

% %

1

2

3

r
r
r

Note as well that the inverse of a rotation is a reverse rotation so that () ()θ θ= −z zΩ R .

Alternatively, both operations may be treated as rotations from different coordinate frame
view points. With respect to the original coordinate system, a rotation R is, in some
contexts, called a coordinate frame rotation. With respect to the rotated coordinate
system, an orientation operation Ω is, in some contexts, called a position vector
rotation.

It follows that a representation of a rotation will depend on its intended use or
interpretation. This document will address three primary use cases:

Primary use case 1. This primary use case concerns rigid body dynamics. Rigid body
dynamics characterize the motion of a rigid body by translation and rotation. Of
particular concern in this document are the characterizations of instantaneous rotational
kinematics – rotational velocity and rotational acceleration, and rotational dynamics –
torque and inertia.

Primary use case 2. This primary use case concerns the descriptions of point positions
in one coordinate system with respect to another coordinate system with a different
orientation. A sub-case concerns position descriptions between a “space-fixed” or
inertial coordinate system and “body-fixed” coordinate system attached to a rigid body
that is either static or moving in time.

Primary use case 3. This primary use case combines the first two. Of particular concern
is representing rigid body dynamics characterizations computed in one coordinate
system in terms of the second coordinate system. The coordinate systems may both be
space-fixed, or one may be moving with respect to the other.

3.2 Representing rotations

Rigid body motion exhibits six degrees of freedom - three degrees of freedom for
translation and three degrees of freedom for rotation. This means that, in principle, a
rotation operation on 3D Euclidean space can be specified by three scalar numbers.

 9

That is indeed the case with Euler angle conventions (see below). However, other less
compact specifications are commonly used because they are more amenable to some
computations such as performing a rotation operation on a vector, composing rotations,
interpolating rotations, and other operations, and/or because they can be measured or
modeled directly. Of the various representation methods in prevalent use, each
presents various tradeoffs with respect to storage size, and computational complexity,
speed, and error control (see 3.5, 3.6, and 3.7). Thus the best representation is
dependent on the requirements and computational environment of a user application.
For this reason, different representations are in use and interoperability becomes an
issue. This issue is compounded by the non-standard meaning of terms in prevalent
use. To support interoperability, this document defines these terms and presents
various methods and algorithms for key operations and inter-conversions between the
representation methods.

3.2.1 Axis-angle vector rotation

The axis-angle representation of a rotation, (),θn , consists of a unit vector ()1=n n

and a rotation angle θ . This represents the rotation ()θnR through angle θ about the
axis spanned by . The rotation direction is determined by the right hand rule:
conceptually, if the right hand holds the vector with thumb pointing in the direction of
the vector, the fingers point in the direction of increasing

n
n

θ . Large rotations (greater
than one full revolution) are important in some applications, however, in this document
angles shall be considered equivalent modulo 2π . As a consequence of Euler's
theorem, every rotation operation may be represented as an axis-angle rotation.

This representation uses four scalar parameters ()1 2 3, ,n n n=n and θ . The constraint

1=n reduces the degrees of freedom down to three degrees of freedom. The axis-

angle representation is not unique. In particular, the axis-angle pairs (),θn and

(), θ− −n represent the same rotation, and when 0θ = , may be any unit vector. n

3.2.1.1 Rodrigues’ rotation formula

The rotation of a vector r to a rotated vector ′r in terms of (),θn is given by
Rodrigues’ rotation formula (see Appendix B for its derivation):

 () ()() () ()cos 1 cos sinθ θ θ′ = + − • +r r r n n ×n r (1.2)

The terms may be rearranged to the alternate form:
 ()() () ()1 cos sinθ θ′ = + − × × + ×r r n n r n r

′ =r R r

 (1.3)

The matrix form of this formula is:

where:

 10

 () ()()3 3

2sin 1 cosθ θ×
⎡ ⎤= + + −⎣ n n ⎦R I S S (1.4)

or, alternatively (see Appendix B):

 () ()() ()3 3cos 1 cos sinθ θ×
⎡ ⎤= + − ⊗ +⎣ ⎦nθR I n n S (1.5)

and

is the skew-symmetric matrix associated with n (see 1.2). Note that here

3 2

3 1

2 1

0
0

0

n n
n n
n n

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

nS

R is the matrix
form of the rotation operator ()θnR .

3.2.2 Principal rotations

For a given 3 dimensional Euclidean space, an orthonormal basis may be represented
by the coordinate 3-tuples: with respect to
that basis. As an axis of rotation, each of these unit vectors is called a principal axis

() () ()1,0,0 , 0,1,0 , and 0,0,1= = =x y zT T T

() () ()

6 of
rotation. A rotation about a principal axis is called a principal rotation. Some authors
refer to these rotations as elementary rotations. The vector space operators:

, , andα βx y zR R R γ will denote the three principal rotations through the

respective angles , , andα β γ 2 modulo π . In axis-angle representation, these are the
rotations: () () (), , , , and ,α β γx y z .

When the basis is rotated by a principal rotation, ,x y z ()αxR , the resulting basis will

have orientation ()αxΩ with respect to the basis, similarly for rotation , ,x y z ()βyR

and orientation () ()() γzR and orientation γzΩ (see 3.1). βyΩ , and rotation

3.2.3 Euler angles

Euler angles are a specification of a rotation (or an orientation) obtained by applying
three consecutive principal rotations. There are twelve distinct ways to select a
sequence of three principal axes and apply the principal rotations (24 if left-handed axes
are considered)7. Each such ordered selection is an Euler angle convention. There is
little agreement among authors in names or notations for these conventions.

6 This term should not be confused with the moment of inertia principal axes (see 5).

7 There cannot be two consecutive rotations on the same axis as they would combine to a single
rotation. Thus, among right-handed axis systems, there are 3 choices for the first rotation axis, 2
choices each for the second and third rotation axes to avoid repeating a preceding axis choice
(3x2x2=12).

 11

There are numerous conventions for Euler angles in use and many are named
inconsistently. (Note that some authors use a left-handed coordinate system. All
coordinate systems in this document are right-handed). The convention defined in the
next section (3.2.3.1) uses axes z–x–z (also known as the 3-1-3 convention) and is often
called the x-convention. Replacing x with y gives the so-called y-convention (z–y–z or 3-
2-3). Quantum physics treatments prefer the y-convention, but x–y–x (or 1-2-1) is also
called the y-convention by some authors. The convention using x–y–z (or 1-2-3) is
defined in section 3.2.3.2 below.

The Euler angle representation of a rotation or orientation is important, in part, because
most inertial systems produce Euler angles as output. In addition, Euler angles are often
used to determine orientation in control mechanisms such as robotic arms and motion
platforms.

The three principal rotations may either be rotations about the original axes, or about the
successively rotated axes. Given a rotation, let be the principal axes after the
successive rotations are applied to the original

, ,x y z% % %

, ,x y z axes. To distinguish between
these two coordinate bases, coordinates with respect to the original basis , ,x y z

, ,x y z% % %

 will be
called space-fixed or static coordinates and those with respect to the sequentially
moving axes will be called body-fixed or rotating coordinates. It is useful to think
of the as attached to a rigid body that will be rotated. , ,x y z% % %

3.2.3.1 Euler angles in the - -z x z convention

We shall assume that the xy-plane and -plane intersect in a line. This line is called
the line of nodes for this convention. The Euler angles in the

xy% %
- -z x z convention are the

three angles defined as follows:

α is the angle between the x-axis and the line of nodes,
β is the angle between z-axis and the z% -axis, and
γ is the angle between the line of nodes and the -axis. x%

In some contexts α is called the spin angle, β is called the nutation angle, and γ is
called the precession angle. Many authors use the symbols φ, θ, and ψ for these
angles, but disagree on the order and angle identification. All angles are considered
equivalent modulo 2π.

These three angles specify a rotation as consecutive principal rotations using the z–axis,
the x–axis and z–axis again. There are two equivalent specifications, space-fixed and
body-fixed.

In the space-fixed specification, all the principal rotations are about the space-fixed
principal axes z and x. The first principal rotation is about the z-axis through angleα ,
followed by the x-axis through angle β , followed by the z-axis again through angleγ .
The combined rotation is:
 () () ()γ β αz x zR R R .
This principal rotation sequence is the Euler angle z–y–z rotation convention.

 12

In the body-fixed specification, all the principal rotations are about the body-fixed
principal axes. Before any rotation is applied, the space-fixed and body-fixed bases
coincide. The first principal rotation is about the z -axis through angleγ . This rotates
axes and to the intermediate orientations x% y% ′x and ′y (in this intermediate orientation,
the x'-axis lies on the line of nodes). The second rotation is about the intermediate x'-
axis through angle β . This second rotation moves the ′y and z axes to intermediate
orientations ′′z and . The third rotation is about the′′y ′′z -axis throughα which moves
axes x' and to their final orientations ′′y ′′′x ′′′y and The combined rotation is

() () ()α β′′ ′ zz xR R R γ
, ,′′′ ′′′ ′′= = =x x y y z z% % %

Figure 6 — Euler z-x-z rotation sequence

. The final body-fixed axis orientations are
. The sequence of body-fixed rotations is illustrated in Figure 6.

x'

z
γ line of nodes

y
γ

γ
y' x' x

z z–axis rotate γ z"
line of nodes

β

y

β y' x' x β
y"

z x–axis rotate β z"
line of nodes

α

x''' y
α

y' x
y" α

y'''
z–axis rotate α

 13

Observe that order of th n the space-fixed and
body-fixed cases:

β α
α β γ′′ ′

z

zz x

R
R R R

(1.6)

To show that both expressions produce the same rotation, note that when x' is at

e three rotation angles is reversed betwee

()γz xR R () ()
() () ()

space-fixed
body-fixed

its
()intermediate position on the line of nodes, the second rotation β′x is equivalent to

first rotating the line of nodes to the x-axis using principal rotatio

R

n ()γ− , rotating

about the x-axis (which is the line of nodes at this point) with
zR

()βxR finally rota

the line of nodes back to its original position with

 and ting

()γzR . In e

() () () ()
ffect,

β γ β γ′ = −z x zxR R R R . Similarly, () () () ()α β′′ ′ α β′= −xR . Noting
he same axis commute and substituting these expressi

the body-fixed formulation gives:

zz xR R R
ons in

() () ()

that two rotations about t

() () () () (
() () ()
() () (){ } () ()

() () () () ()
() () ()

)β α β β γ

β α γ

γ β γ α γ

γ β α γ γ

γ β α

′ ′ ′

′

⎤−α β γ′′ ′ ⎡= ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= −⎣ ⎦

= −

=

z zx x x

z zx

z x z z z

z x z z z

z x z

R R R R R

R R R

R R R R R

R R R R R

R R R

This result:

zz xR R R

() () () () () ()α β γ γ β α′ =z z x zxR R R R R (1.7)

shows that the space-fixed and body-fixed formulations produce the same rotatio
formulations are important. The matrix formulations of the principal rotations (Equation

n of the axes with respect to the

′′zR

n. Both

(1.15)) are expressed with respect to the static space-fixed frame. However, an inertial
system attached to the body would read out the angles with respect to the rotating body-
fixed frame.

The orientatio , ,x y z% % % , ,x y z axes is the inverse (or
 so that the transpose) of the rotation angle sequence reverses:

 () () ()α β γz x zΩ Ω Ω (1.8)

his is Euler angle z–y–z orientation convention.

ntion (Tait-Bryan angles)

In this convention the line of nodes is the intersection of the xy-plane and -plane. The
Euler angles in this convention are defined as follows:

T

3.2.3.2 Euler angles in the - -x y z conve

yz% %

 14

s the angle between the line of nodes and the y% -axis, φ i

θ is the angle between z-axis and the yz% % -plane, and
ψ is the angle between the y-axis and the line of nodes.

These three angles specify a rotation as principal rotations about the space-fixed
principal axes. The first rotation is by angleφ about the x-axis. The second is by angle
θ about the y-axis. The third is by angle ψ about the z-axis.

() () ()

The combined rotation

 ψ θ φz y xR R R space-fixed. (1.9)

is the Euler angle z–y–x rotation convention. The equivalent body-fixed specification is:

() () ()φ θ ψR R R body-fixed. zx y% % % (1.10)

φ θ ψ

ψ θ φ
x y z

z y x

Ω Ω Ω

Ω Ω Ω%% %

angles, or nautical angles. The various names given to these angle symbols include:

The corresponding Euler angle x–y–z orientation convention is the inverse operation:

() () ()
() () ()

space-fixed

body-fixed

(1.11)

The Euler angles in this convention are variously called Tait-Bryan angles, Cardano

φ roll or bank or tilt,
θ pitch or elevation, and
ψ yaw or heading or azimuth.

Figure 7 - Tait-Bryan angles

x-axis

y-axis z-axis

φ roll

ψ Yaw

θ pitch

 15

When the fixed body is an aircraft, the common practice is to choose the center of mass
as the co ith the x-axis pointing forward, the y-axis pointing
starboard (to complete a right handed system8). The
"entity coordinate system" defined in the IEEE 1278.1-1995 standard uses the same axis
directions, but the coordinate s of the entity bounding
volume. In both of these cases z convention are called the

n with
pace-

e
or

e

ordinate system origin w
, and the z-axis pointing down

ystem origin is at the center
 the Euler angles in the x–y–

Tait-Bryan angles and the angle names roll, pitch, and yaw are specifically used.

The Euler angle x–y–z orientation convention is used to specify orientation in DIS
packets as specified in the IEEE 1278.1-1995 standard [2]. In that standard Euler
angles are defined as the successive rotations needed to transform from the world
coordinate system to the entity coordinate system. In that standard, the world
coordinate system is the WGS84 Geocentric SRF and the entity coordinate system is as
shown in Figure 7. The specified rotation sequence is the Tait-Bryan angles rotatio
respect to the body-fixed (rotating) entity frame, shown in Equation (1.10), or the s
fixed equivalent shown in Equation (1.9). To express a world frame coordinate in th
entity coordinate frame, the inverse of that rotation is the required orientation operat
(Equation (1.11)). The corresponding matrix operator (see 3.2.4.2) is denoted in th
IEEE 1278.1-1995 standard as []w b→R .

3.2.3.3 Gimbal lock

The term gimbal lock refers to a gyroscope mounted in three nested gimbals to provide
three degrees of rotational freedom. Each mounting scheme corresponds to an Euler
angle convention. In any such m s

ounting cheme, there exist critical angles for the
middle gimbal that reduce the rotational degrees of freedom from three to two. In those
critical configurations, the gimbals lie in a single plane and rotation within that plane is
"locked out" by the gimbal mechanism. This loss of a degree of freedom is termed
"gimbal lock".

The case of the Euler angle - -z x z
 line (the lin

 rotation convention, it is assumed that the xy-plane
and xy% % -plane intersect in a e on nodes). That assumption is met when

π) 0(modulo 2 β ≠ and β ≠ π . If not, 0β = or β = π and the consecut
collapse do o

ive rotations
wn to a single principal r tation:

() () () () () ()
() () () () () ()

0 : 0
:

β γ α γ α γ α
β γ α γ α γ

= = = +
= π π = − = −

z x z z z z

z x z z z z

R R R R R R
R R R R R R (1.12)

This situation is illustrated by a spinning table top. The top spins on its spin-axis and
precesses about the precession-axis. Th between the spin- and precession-axes
is the nutation angle. e spin-axis is perfectly vertical (either upright or upside
down), the nutation angle is 0 or π and the spin- and precession-axes become
indistinguishable from each other as indicated in Equation (1.12).

α
.

e angle
When th

8 In this axis assignment, positive pitch tilts the aircraft up (angle of attack), and if the x-axis aligns
with local North, yaw corresponds to heading and azimuth.

 16

The case of the Euler angle z-
xy-plane and yz% % -plane intersect in a

y-x convention (Tait-Bryan angles) it is assumed that the
line (the line of nodes). That assumption is met

when 2θ π≠ ± modulo 2π. If not, 2θ π= ± and the x% -axis becomes parallel to the z-
axis and the consecutive rotations collapse down to a single principal rotation:

() () ()

() () ()2 :
2

2 :
2
πθ π ψ φ ψ φ

πθ π

⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

= −

z y x zR R R R
.

ψ φ ψ φ−⎛ ⎞ = −⎜ ⎟
⎝

z y x zR R R R

 by a as in re 7.

les of

⎠ (1.13)

This situation is illustrated n aircraft Figu When the aircraft either climbs
vertically, or dives vertically, roll-rotation cannot be distinguished from (plus or minus)
yaw-rotation. This occurs at critical pitch ang 2θ = ± π as indicated in Equation

3.2.4 Rotation and orientation matrices

A rotation (or orientation) operation on vector space is a linear operation, thus for a given
 If

(1.13).

basis, it has a matrix representation (see the direction cosine matrix definition in 3.1).
R is a rotation (or orientation) matrix, it satisfies these properties:

()
T -1

det 1=

=

R

R R

(1.14)

).
icular, the rotation m i

commutative).

A rotation operation may be realized by simple matrix multiplication: r . The
inverse operation is T . While this is computationally convenient, the matrix
representation does not lend itself well to intuitive visualization of the corresponding
rotation. According to E ler's rotation theorem, there exists an axis-angle pair ()

Matrices satisfying these properties form an algebraic group with respect to matrix
multiplication. This group is known as the special orthogonal group of degree 3, SO(3
In part product of any two atrices is tself a rotation matrix and
similarly for orientation matrices. (Note: Matrix multiplication is generally not

 ′ =r R
′=r R r

u ,θn for

which R is the matrix representation of the rotation operator ()θnR . Finding this pair

(),θn involves the computational problem of finding the eigenvalues of R (see
Appendix E).

For this and other reasons, it is useful to able to factor a given rotation matrix into a
product of rotation matrices corresponding to a sequence of principal rotations. In
general, a rotation matrix can be factored into three or less principal rotations called
principal factors of the rotation. In particular, a rotation matrix has a factorization for
each of the Euler angle convention of sequences of principal rotations.

 17

T tations) are:

 T and

0 sin cos

cos 0 sin
0 1 0 ,

0 0 1

β β
β β

he matrix forms of the principal rotations (and orien

() ()T
1 0 0
0 cos sin ,α α α α

α α

⎛ ⎞
⎜ ⎟= =

() ()

() ()T

sin 0 cos

cos sin 0
sin cos 0 .

β β

γ γ
γ γ γ γ

⎜ ⎟−⎝ ⎠
−⎛ ⎞

⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= = ⎜ ⎟

= =
⎜ ⎟
⎝ ⎠

y yR Ω

(1.15)

x xR Ω

⎜ ⎟z zR Ω

NOTE: We are using R to de on, note the rotation operation that moves a point by rotati
and Ω to denote the orientation operation that transforms a coordinate in a coordinat
system into a coordinate in a coordinate system that is rotated with respect to the first
coordinate system.

s will deal with matrix factorizations corresponding t
convention and the Euler angle z–y–x convention (Tait-Bryan angles).

e

The next two section o Euler angle in
z–x–z

3.2.4.1 Euler angle - -z x z convention matrix factorization

To factor a matrix
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

M that belongs to SO(3) into a sequence of

principal factors in the Euler angle - -z x z rotation convention9 () () ()γ β αzR
expand the seq

x zR R ,
ue the corresponding matrix forms (Equation (1.15)).

The resulting matrix is:

nce by multiplying

() () ()
cos cos cos sin sin sin cos cos cos sin sin sin
cos sin cos cos sin cos cos cos sin sin sin cos

sin sin sin cos cos

γ β α

α γ β α γ α γ β α γ β γ
β α γ α γ β α γ α γ β γ

β α β α β

=

− − −⎛ ⎞
⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

z x zR R R

−

 (1.16)

9 Note that the order of applying each of principal rotations is right-to-left so that the
()αzR rotation is conceptually performed first, but matrix multiplication is associative.

 18

Matching the elements of this matrix to those of M, we find that 33 cosa β= ,

()31 32 tana a α= , and 13 23 tana a γ− = . These equations Table

Table 1 – Principal factors for z-x-z rotation

Case
Principal factors for rotation

lead to the solutions in

1 based on the value of 33a .

 () () ()γ β αz x zR R R

all angles modulo 2π) (

()
[]

33arccos

 principal value
0 β< < π

 ()31 32arctan2 ,a a

aβ = α =
 ()13 23arctan2 ,a a

γ =

−

33 1a ≠ ± ()
[]

33arccos

 2 principal value
2

aβ

β

=

π −

π < < π

 ()31 32arctan2 ,a a
α =

− − ()13 23arctan2 ,a a
γ =

−

33 1a = − β = π any value of α ()21 11arctan2 ,a a
γ

α
=

+

33 1a = + 0β = α ()21 11arctan2 ,a a
γ

α
=

any value of −

In the case , arccos() is multi-valued so that there are two valid solution sets
depending on the quad es10. The principal value solution
is the commonly used one. The two argument arctangent fu n2() is defined in
section 1.2.

In the case , using the trigonometric identities for the difference of angles and
ubstituting for

33 1a ≠ ±
rants selected for arccosine valu

nction arcta

33 1a = −
s β π= , sin 0β = andcos 1θ = − , the matrix expression reduces to :

 () () ()
() ()
() ()

cos sin 0
sin cos 0

0 0

γ α γ α
γ π α γ α γ α

⎛ ⎞− −
⎜ ⎟= − − −⎜ ⎟
⎜ ⎟1−⎝ ⎠

z y zR R R .

solution

10 Note that computer library functions such as acos() return the principal value only. The second
 for β may obtained by subtracting the principal value from 2π .

 19

This shows that only the difference of the other two angles is determined as

() . Therefore, all values are valid for 21 11arctan2 ,a aγ α− = α if we set

()21 11arctan2 ,a aγ α= + . The case 31 1a = + is similar to the previous case with the

sum of the angles determined by () . These two cases
correspond to Equation (1.12) , and s.

To factor the matrix M into a sequence of principal factors in the Euler angle

21 11arctan2 ,a aγ α+ =
are the gimbal lock case

 - -z x z
orientation convention () () ()α β γz x zΩ Ω Ω

he form:
, the corresponding orientation matrices in

Equation (1.15) are multiplied out to t

cos

α β γ() () ()
cos cos cos sin sin cos sin cos cos sin sin sin
sin cos cos sin cos cos cos sin sin sin cos

sin sin sin cos cos

α γ β α γ β α γ α γ β α
α γ β α γ β α γ α γ β α

=

− +⎛ ⎞
⎜ ⎟

⎟
⎟

z x zΩ Ω Ω

Table 2 – Principal factors for z-x-z orientation

Case
Principal factors for orientation

β γ β γ β
− − −⎜

⎜ −⎝ ⎠

 (1.17)

This matrix is the transpose of the rotation case (Equation (1.16)). The solutions for the
principal factor angles are shown in Table 2.

() () ()α β γz x zΩ Ω Ω

(all angles modulo 2π)

()
]

33

lue
0 β< < π

 ()2 ,a a[
arccos

 principal va

aβ =

13 23arctan
α =

 ()31arctan2 ,a a32

γ =

−

1a ≠ ±33

 ()
[]

33arccos

 2 princ
2

aβ

β

=

π −

π < < π
()n2 ,a aipal value

13 23arcta
α =

− − ()arctan2 ,a a31 32

γ =

−

33 1a = −

β = π any value of α ()12 11arctan2 ,a a
γ

α
=

+

33 1a = +

0β = any value of α ()12 11arctan2 ,a a
γ

α
=

−

 20

As in the rotation factorization, for case 31 1a ≠ ± , arccos() is multi-valued so that there
are two valid solution sets depending on the quadrant selected for arccosine values. The
principal value solution is the commonly used one. Here as well, the extreme values

1a = ± are the gimbal lock cases (see above).

As can be seen in the preceding tables, the three angle sequence corresponding to a
given rotation or orientation operator is not unique modulo 2π. Two sequences,
(

31

)1 1 1, ,α β γ and ()2 2 2, ,α β γ of z-x-z principal factors specify the same operator if they

Table 3 – Equivalence of z-x-z principal factor sequences

Case

 2π

Criteria for the equivalence of
angle sequences

satisfy one the criteria of the next Table.

equality
modulo

()1 1 1, ,α β γ and ()2 2 2, ,α β γ
uences

for
principal factor z-x-z seq

1 2β β= []1 2 1 2 1 2, , α α γ γ β β= = ≠ 0 or π (in)equalities modulo 2π

1 2 2β β+ = π []2 1 2 1 1 2, , α α γ γ β β− = π − = π ≠ π0 or (in)equalities modulo 2π

1 2β β= = π 21 1 2α γ α γ− = − equality modulo 2π

1 2 0β β= = 1 1 2 2α γ α γ+ = + equality modulo 2π

3.2.4.2 Tait-Bryan angles matrix factorization

To factor a matrix SO(3) into a sequence of

otation

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

M that belongs to

principal factors in the Euler angle z-y-x r convention (Tait-Bryan angles)
() () ()ψ θ φz y xR R R , we multiply the corresponding principal rotation matrices

(Equation (1.16)) to obtain:

 21

() () ()ψ θ φ =z y xR R R

sin sin

sin cos sin sin sin cos cos sin sin cos cos sin
sin cos sin cos cos

cos cos cos sin sin sin cos cos sin cosψ θ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

θ θ φ θ φ

+⎛ ⎞
⎜ ⎟+ −⎜ ⎟
⎜ ⎟−⎝ ⎠

 (1.18)

Matching the elements of this matrix to those of we d

−

 fin that 31 sina θ= − , M

32 33 tana a φ= , and 21 11 tana a ψ= . These equations Table 4
for the principal factor angles based on the value of a

Table 4 – Principal fac z-y rotation

Case
Principal factors for rotation

lead to the solutions in

31.

tors for -x

() () ()ψ θ φz y xR R R

(all angles modulo 2π)

()
[]

31arcsin

2 2

aθ

θ

= −

− π < < π
()21 11arctan2 ,a a

ψ =
 principal value ()32 33arctan2 ,a aφ =

31 1a ≠ ±

[]
()31arcsin

2

aθ

θ

= −

π < <

 principal value
2

π −

3π

 ()32 33arctan2 ,a aφ = − − (21arctan2 a
ψ =

), a− 11−

31 1a = − θ = π 2 ()12 13arctan2 ,a a
φ

ψ
=

+
 any value of ψ

31 1a = + θ = −π 2 ()12 13arctan2 ,a a
φ

ψ
=

− − −
 any value of ψ

 22

In the case a alid solution sets
depending on the quadrant selected for arcsine values11. The principal value solution is
the commonly used one.

In the case using the trigonometric identities for the difference of angles and
substituting

31 1a ≠ ± , rcsin() is multi-valued so that there are two v

31 1a = − ,
sin 1θ = andcos 0θ = , the matrix reduces to :

 () ()
() ()
() ()

0 sin cos
0 cos sin
1 0 0

φ ψ φ ψ
ψ φ φ ψ φ

⎛ ⎞− −
π ⎜ ⎟⎛ ⎞ = − −⎜ ⎟ ⎜ ⎟2⎝ ⎠ ⎜ ⎟−⎝ ⎠

z y xR R R ψ− .

This shows that only the difference of the other two angles is determined as
() . Therefore, all values are valid for 12 13arctan2 ,a aφ ψ− = ψ if we set

()12 13arctan2 ,a aφ ψ= + . The case 31 1a = + is similar to the previous case with the

sum of the angles determined by ()12 13arctan2 ,a aφ ψ+ = − −
 Equation (1.13) and are the gimbal lock cases.

. These two cases
correspond to

To factor matrix into a sequence of principal orientation factors of the form
() ())

M
(φ θ ψx y zΩ Ω Ω

() ()
, multiply the corresponding principal factor matrices to obtain:

φ θ ψ

ψ θ ψ θ θ

()
cos cos sin cos sin

cos sin sin sin cos sin sin sin cos cos cos sin
cos sin cos sin sin sin sin cos cos sin cos cos

ψ θ φ ψ φ ψ θ φ ψ φ θ φ
ψ θ φ ψ φ ψ θ φ ψ φ θ⎜ + − φ

=

−⎛ ⎞
⎜ ⎟− +⎜ ⎟

⎟
⎝ ⎠

x y zΩ Ω Ω

 (1.19)

Note that this matrix is just the transpose of () () ()ψ θ φz y xR R R so that solutions use
transposed elements as shown in Table 5.

In the Table 5 case , arcsin() is multi-valued so that there are two valid solution
ets depending on the quadrant selected for arcsine values. The principal value solution

is the commonly used one. The cases 1a

31 1a ≠ ±
s

31 = ± are the gimbal lock cases (see above).

11 Note that computer library functions such as asin() return the principal value only. The second
solution for θ may obtained by subtracting the principal value from π .

 23

Table 5 – Pri tion ncipal factors for x-y-z orienta

Principal factors for orientation () () ()φ θ ψx y z

(all angles modulo 2π)
Case

Ω Ω Ω

()
[]

13arcsin

 principal value
2 2

aθ

θ

= −

− π < < π

 ()23 33arctan2 ,a a
φ =

 ()12 11arctan2 ,a a
ψ =

13 1a ≠ ± ()
[]

13arcsin

 principal value
2 2θ

π +

π < < 3π
arctan

aθ = −

)2 ,a a

ψ =

(23 33

φ =

− −
 ()12 11arctan2 ,a a− −

13 1a = − θ = π 2 ()21 31arctan2 ,a a
φ

ψ
=

+
 any value of γ

13 1a = + θ = −π 2 ()21 31arctan2 ,a a
φ

ψ
=

− − −
 γ any value of

As can be seen in Table 4 and Table 5, the three angle sequence corresponding to a
given rotation or orientation operator is not unique modulo 2π. Two such sequences,
()1 1 1, ,α β γ and ()2 2 2, ,α β γ specify the same operator if t ey satisfy one the criteria f
Table 6.

h o

 24

Table 6 – Equivalence of z-y-x rotation or x-y-z orientation principal factor sequences

Case
equality

modulo 2π

Cr ce of
angle sequences

iteria for the equivalen
()1 1 1, ,φ θ ψ and ()2 2 2, ,φ θ ψ

 orientation sequences
for principal factor

z-y-x rotation or x-y-z

1 2θ θ= 1 2 1 2 1 2,φ φ ψ ψ θ θπ⎡ ⎤= = ≠ ± ≠⎢ ⎥2⎣ ⎦
 (in)equalities modulo 2π

1 2θ θ+ = π 2 1 2 1 1 2,φ φ ψ ψ θ θπ⎡ ⎤− = π − = π ≠ ± ≠⎢ ⎥2⎣ ⎦
 (in)equalities modulo 2π

1 2θ θ π
= =

2
 1 1 2 2φ ψ φ ψ− = − equality modulo 2π

1 2θ θ π
= = −

2
 1 1 2 2φ ψ φ ψ+ = + equality modulo 2π

Factorizations for other Euler angle conventions may be obtained in a similar fashion.

3.2.5 Quaternions

In this section the definition of quaternions is presented. It is then shown that each
quaternion induces a rotation operator. The importance of the algebraic structure of the
quaternions is that rotations behave well under these operations.

3.2.5.1 Quaternion notations and conventions

The quaternions are a 4-dimensional vector space together with a vector multiplication
operation that forms a non-commutative associative algebra. In analogy to complex
numbers that are written as 2 − , quaternion axes are defined with the
following relationships: 2 2 2 . A quaternion is denoted as

e e e e= + + +q i

, 1a b+ =i i , , ,i j k
1= = = = −i j k ijk q

0 1 2 3j k . The first term e is called the “real” (or “scalar”) part of q and
e e e+ +i

0

1 2 3j k is called the “imaginary” (or “vector”) part of q .

There are several other conventions used to denote a quaternion. To distinguish
conventions in this document, the e e e e0 1 2 3+ + +i j k convention will be called the
Hamilton form. The scalar vector for of a scalar and 3-tuple
vector () . The scalar is the real part of and the vector corresponds to the

imaginary part of
T

. As can be seen below, the scalar vector form

m uses an ordered pair

0,e=q e q

q , ()1 2 3, ,e e e=e

 25

allo
reversed: .)

An vention is the 4-tuple form which is just the 4-tuple of scalar numbers
)eq . Formulations below will be given in each of these three notational

conventions. (NOTE: In the literature, the real part is sometimes placed last:
())

3.2.5.2 Quaternion algebra

Let

ws for some compact notation. (NOTE: In the literature, the order is sometimes
()0,e=q e

other con
(0 1 2, , ,e e e= 3

1 2 3 4 4 0, , , where .e e e e e e= =q

0 1 2 3p d d d d= + + +i j k and be two quaternions and let
Quaternion addition and scalar multiplication (in each notation
as usual for 4D vector space:

q t be a scalar.
al convention) is defined

() () () ()
()
()

0 0 1 1 2 2 3e d te d te+ + +j 3

0 0

0 0 1 1 2 2 3 3

[Hamiltion form]
, [scalar vector form]

[4-tuple form], , ,

t d te d t

d te t

d te d te d te d te

+ = + + + +

= + +

= + + + +

p q i k

d e

Assuming associative multiplication, the quaternion axes relationships gives the
quaternion multiplication rule (in each notational convention):

()0 0 1 1 2 2 3 3d e d e d e d e= − − −pq

()
(

1 0 0 1

d e d e+ + +)

(

2 3 3 2

2 0 0 2 3 1 1 3

3 0

d e d e d e d e

d e d e

d e

+ + + −

−

+

⎜ ⎟

i

j
[Hamiltion form]

Quaternion m oduct term in the scalar
vector form is anti-symmetric). However, the quaternion addition and multiplication

()
() ()()

3 0 0 3 1 2 2 1

0 0 0 0,

d e d e d e d e

d e e d

+ + + −

= − • + + ×

k

d e d e d e [Scalar vector form]

()
()

0 0 1 1 2 2 3 3 ,

,

d e d e d e d e

d e d e d e d e

− − −

+ + −

⎛ ⎞
⎜ ⎟

()
)

1 0 0 1 2 3 3 2

2 0 0 2 3 1 1 3

0 3 1 2 2 1

,d e d e d e d e

d e d e d e

=
+ + −

+ −

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

[4-tuple form]

 (1.20)

ultiplication is not commutative (note the cross pr

operations together form an associative algebra.

 26

The conjugate of a quaternion q is defined analogously with complex numbers:

e∗ =q i

0 1 2 3 [Hamiltion form]

,

e e e

e

− − −

= −

j k

1)

The product of a quaternion with its conjugate is "pure-real" and is called the norm of

2 2 2 2
0 1 2

[Hamiltion form]
e e e= + + +

The modulus of a quaternion is defined as the square root of the norm:

()
)

0

0 1 2 3

[scalar vector form]
[4-tuple form]

,

, ,

e

e e e

= −

− −

e

(1.2(

 q :

()
3

2 2 2 2
0 1 2 3

[scalar vector form]
[4-tuple form]

,

, 0, 0, 0

e

e e e e= + + +

0 ()
2 2 2 2
0 1 2 3e e e e∗ ∗= = + + +qq q q

2 2 2 2
0 1 2 3e e e e= = + + +q qq ∗ .

A quaternion is a unit quaternion if q 1=q . In that case 1∗ ∗= =qq q q which implies

that, for a unit quaternion, its conjugate is its multiplicative inverse 1− ∗=q q . Mor

generally, the inverse of a (non-unit) quaternion p is

e

1
2

∗ ∗
− =

p pp ∗ =
pp p

.

If is a unit quaternion, then may be expressed in the form:

 where:

()0,e=q e q

() ()()cos , sinα α=q n

()0

2 2 2
1 2 3

is a unit vector in 3D space,

, and

1

arctan2 , e

e e e

α

=

=

= + +

n e
e

e

e

(1.22)

Note: The two argument arctangent function arctan2() is defined section 1.2.

 27

3.2.5.3 Quaternion operators on 3D Euclidean space

Each quaternion corresponds to a linear operator on 3D Euclidean space as follows:

Let be a point in 3D Euclidean space, then the corresponding quate

formed by using 0 for the real part and for the complex part

q

()1 2 3, ,r r r=r rnion is

r ()0,r . A unit quaternion

. It is shown in Appendix C that the real part of the product

q operates on ()0,r by left multiplying with q and right multiplying with its conjugate
∗q () (00, ,r=q r q r)∗ ′ ′ , is 0.

us,)0, ′q r r and the quaternion associatesTh () (0,∗ =q q ′r with . Symbolically the
operation on r is:.

r

(){ }0,imaginary part ∗′ =r r q r qa . (1.23)

 terms of it is also shown in Appendix C that

 r . (1.24)

 ()0,e=q eIn

() ()2
0 02 2e e′ = − • + • + ×r e e r e r e e

Note that ()0,e− = − −q e produces the same ′r so that q and −q p
rotations.

roduce equivalent

Since is a unit quaternion, there exists (Equation (1.22)) an angle q α satisfying

()α= () ()cos , sin αq n . By substitution in Equation (1.24):

() ()() () () () ()

 (cos) () () ()
() () ()

() ()() () ()

2 2 2

2 2 2

if then

and

so that

cos sin 2sin 2cos sin

2 ,
cos sin 1 2sin ,

sin 2cos sin ,

cos 1 cos sin

α α α α α

θ α
θ α α α

θ α α

θ θ θ

− • + • + ×

=

= − = −

=

′ = + − • + ×

r n n r n r n n r

r r n r n n r

This last expression is Rodrigues’ rotation formula (Equation (1.3)) for a counter-
clockwise rotation about axis n through angle

′ =

θ , thus quaternion operation on r is a
rotation operation. Unit quaternions in scalar vector form are often written as

cos , sin
2 2

= ⎜ ⎟
θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

q n to indicate the corresponding rotation angle θ (see Equation

(1.22)).

 28

Let p be any non-zero quaternion and let 2=

pq be its corresponding unit quaternion,
p

() () () ()1
20, 0, 0,0,

∗ ∗
− ∗= =

p p pp r pthen =p r r q r q
p pp

.

This shows that any non-zero quaternion performs a rotation with the () 10, −p r p
peration and that this rotation is identical to the rotation performed by the
rresponding unit quaternion

o
co () ()10, 0,− ∗=q r q q r q . For this ors

use (
 reason, some auth

) 1−r p t

n d use the ()
0,p aternion while other restrict the set to uni

quaternions o ly an

 operations for any non-zero qu

 0, ∗q r q operator. Note, however, that Equations (1.22)
and (1.24) assume a unit quaternion. A unit quaternion in 4-tuple form is also call
Euler parameters (or the Euler-Rodrigues parameters) of a rotation.

mputation of the composition
of two rotations. If q and q are two unit quaternions, the composite rotation on r is
obtained by first rotating with the rotation operation induced by q and then rotati
result with the rotation operation induced by q . This composite rotation is the same as

rotation induc r e

ed the

 The quaternion representation of rotation facilitates the co
1 2

1 ng the

2

the single ed by the quaternion p oduct q q sinc

2 1

(){ } () { }(){ }2 1 1 2 2 1 1 2 2 1 2 10, 0, 0, ∗∗ ∗ ∗ ∗ .

3.2.5.4 Quaternions in matrix forms

A quaternion can also be represented as a 2x2 complex matrix or a 4x4
real matrix.

e 2×2 complex matrix form is .

The 4x4 real matrix form is

= =q q r q q q q r q q q q r q q

()0 1 2 3, , ,e e e e=q

 0 1 2 3

2 3 0 1

e ie e ie
e ie e ie

+ +⎛ ⎞
⎜ ⎟− + −⎝ ⎠

0 1 3 2

1 0 2 3

Th

e e e e
e e e e

3 2 0 1

2 3 1 0

e e e e
e e e e

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −

.

The advantage of these fo o
operations are just the usual matrix addition and e

∗ is just the matrix conjugate transpose in the complex 2x2 case and the
matrix transpose in the real 4x4 case.

⎜ ⎟⎜ ⎟
⎝ ⎠

rms are that quaternion addition and quaterni n multiplication
 matrix multiplication op rations. The

conjugate q

 29

3.2.6 Representation summary

following Ta
 attribu

Represen-
tation type

Data
compo-
nents

Data
constraints

Ambiguities
(modulo 2

Some important attributes of the representations in this section are summarized in the
ble.

Table 7 – Summary of representation tes

π) Composition Inverse

Axis-angle
(),θn 4 1=n

(),θn
is equivalent to

(), θ− −n .

If 0θ = , n is

Convert to/from
another

representation
for

(), θ−n
or

(),θ−n the
operation.

indeterminate

Matrix
R 9

()
T -1

t 1de =

=

R

R R
 None Matrix

ultiplication
T

m R

Euler angle 3 None

e

z-x-z convention:
see Table 3

an angles:
Table 6

nvert to/from
another

for the
operation

(see Note 2).

See
Note 1 conventions

2 or mor Co

representation

Tait-Bry
see

q
Unit

quaternion
unit ∗q or

∗−q
Quaternion

multiplication.
is equivalent to

−q
(see Note 3).

q
4 constraint:

1∗ =qq

Note 1: In the Euler angle z-x-z rotation convention
-1() () () () () () () () ()γ β α α β γ α β⎡ ⎤ = − − − = γz x z z x zR R R Ω Ω Ω

In the Euler angle z-y-x rotation convention (Tait-Bryan angles)

-1

⎣ ⎦z x zR R R

() () () () () () () () ()ψ θ φ φ θ ψ φ θ ψ⎡ ⎤ = − − − =⎣ ⎦z y x x y z x y zR R R R R R Ω Ω Ω

Note 2: The composition of Euler angle operations may also be performed in a "direct"
method that involves expressions that use combinations of forward and inverse
trigonometric functions.

Note 3: Formulae such as Equation (1.24) require the unit quaternion constraint. Other
useful relationships such as Equation (1.23) do not have that requirement. For that
reason, some applications do not enforce the unit constraint. In the unconstrained case,
every non-zero scalar multiple of a given quaternion is rotationally equivalent to it.

 30

3.3 Performing a rotation on an arbitrary point (formulae)

A point represented b ed by vector r'.

Using the rotation matrix representation

3.3.1 Rotation about the origin

y vector r is rotated to a new position represent

in mult

 r

Using Euler angle sequences

The rotated point is obta ed by matrix iplication.

′ =r R

Euler angles are first converted to a matrix (section 3.4.1 below). For the Euler angle
- -z x z rotation convention, use the matrix in Equation (1.16). For the Euler angle z–y–x

vention (Tait-Bryan angles), use quation (1.18).

In either convention onversion to qua ernion m o be used (s on 3.4.9
below).

Using the axis-angle representation

rotation con the matrix in E

, c t ay als ee secti

A counter-clockwise rotation about axis n ugh a(a unit vector) thro ngleθ is given by
R tation formula (Equation (1.2

odrigues’ ro)):

() ()() () ()sin θ+ ×n n r . cos 1 cosθ θ′ = + − •r r r n

Using the quaternion representation

F n (1.2 the r ified by unit quaternion ()0,e=q e is: rom Equatio 4), otation spec

 r

ee also Equation (1.23) for the direct quaternion multiplication method.

To perform a rotation of point q about the point p to obtain a rotated point q', let

t

() ()2
0 02 2e e′ = − • + • + ×r e e r e r e e

S

3.3.2 Rotation about another point

 r = q – p.

Rotate r to r', and then le

 q' = r' + p.

 31

3.4 Inter-converting between representations (formulae)

3.4.1 Euler angle convention to matrix

trix
product of the corresponding three principal rotation matrices defined in 3.2.2, Equation
The Euler angle z-x-z rotation convention is converted to a matrix R by forming the ma

(1.15).

 () () ()γ β α= z x zR R R R .

The resulting matrix is given in Equation (1.16).

n convention is converted to a matrix ΩThe Euler angle z-x-z orientatio by forming the
ding three principal orientation matrices defined in 3.2.2,

matrix product of the correspon
Equation (1.15).

() () ()α β γ= z x zΩ Ω Ω Ω .

The resulting matrix is given in Equation (1.17).

r angle z-y-x rotation convention (Tait-Bryan angles) is converted to a matrix R
by forming the matrix product of the corresponding three principal rotation matrices:
The Eule

 () () ()ψ θ φ= .

The resulting matrix is given in Equation (1.18).

z y xR R R R

The Euler angle
Co

x-y-z orientation convention (Tait-Bryan angles, IEEE 1278.1-1995
nvention) is converted to a matrix Ω by forming the matrix product of the

corresponding three principal orientation matrices:

 () () ()φ θ ψ=Ω Ω Ω Ω . x y z

The resulting matrix is given in Equation (1.19).

3.4.2 Matrix to axis-angle

Given a rotation matrix =R , find a corresponding axis-angle
11 12 13a a a⎛ ⎞

⎜ ⎟
21 22 23

31 32 33a a a
⎜ ⎟
⎜ ⎟
⎝ ⎠

a a a

representation (),θn . The following method to find (),θn is based on Appendix E
here w it is shown that:

() ()a a a
 θ θ π

⎞ ⎛ ⎞⎞ ⎛ ⎞− + + −
= ≤ ≤⎟ ⎜ ⎟⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

11 22 331 1
arccos , 0 .

2 2
R

There are three cases for the computation of that depend on the value of

⎛⎛
= ⎜⎜

Trace
arccos

n θ .

Case 0θ = : There is no rotation so is indeterminant. n

 32

Case 0 θ< < π : Let

1
=n v , where:

v
a a−⎛ ⎞

 a a
a a

⎜ ⎟= −

21 12

 this case,

⎜ ⎟
⎜ ⎟−⎝ ⎠

13 31v .
32 23

 ()2 sinv θ=In .

Case: θ = π : First find the maximum diagonal element of 11 22 33or, ,a a a R . Then:

 is the maximum. Let 1, ,a a a= +v .

Sub-case: is the maxim m. Let
T

T
+

 Sub-case: ()T
 11a 11 12 13

 u 22a ()21 22 23, 1,a a a= +v .

 Sub-case: 33a is the maximum. Let ()=v 31 32 33, , 1a a a

Finally let
1

=n v
v

.

(), θ− −nIn all cases, is a rotation ally equivalent solution.

Given an orientation matrix Ω , let T=R Ω and compute (),θn as above.

o convert an axis-angle rotation

3.4.3 Axis-angle to rotation matrix

 (),θnT to the corresponding rotation matrix R, use
Rodrigues’ rotation formula (Equation (1.4) or (1.5)):

() ()(3 3 sin 1 coθ×
⎡= + + −⎣ nR I S)

() ()() ()3 3

2s

cos 1 cos sin

θ

θ θ θ×

⎤⎦
⎡ ⎤= + − ⊗ +⎣ ⎦

n

n

S

I n n S

(1.25)

0

0

n n−⎛ ⎞
⎜ ⎟

where:

 1

2 1

0n n
n n

3 2

3= −

⎠
is the skew-symmetric matrix associated with n (see 1.2).

⎜ ⎟
⎜ ⎟−⎝

nS

 33

Substi ()1 2,n ntuting 3

T,n=n in the expansion of R to matrix elements yields:

() () ()
() () ()
() () ()

2
1 1 2 3 1

2
2 1 3 2 2 3 1

2
3 1 2 3 2 1 3

1 cos cos 1 cos sin 1 cos sin
1 cos sin 1 cos cos 1 cos sin
1 cos sin 1 cos sin 1 cos cos

n n n n n n
n n

3 2n
n n n n

n n n n n n n
n

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

⎛ ⎞− + − − − +
⎜ ⎟

− + − + − −⎜ ⎟
⎜ ⎟− − − + − +⎝ ⎠

(1.26)

n matrix corres nding to (),θn is the transpose matrix: T=Ω RThe orientatio po .

 Axi3.4.4 s-angle to quaternion

Starting with an axis-angle representation (),θn , where n is a un vector and angle θit is

a counter-clockwise rotation about n. Let:

0

1 1

2 2

3 3

sin
2 2

e n
e n

= = =⎟ ⎜ ⎟⎜ ⎜ ⎟⎠ ⎝ ⎠⎜ ⎜ ⎟
⎝ ⎠

e n

cos
2

sin

e

e n
θ θ

= ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜⎟ ⎝⎟

⎝ ⎠

(1.27)

T

0 1 2 3

miltio

[4-tuple form], , ,e e e e= (1.28)

A rotationally equivalent quaternion is –q.

nion

iven a rotation matrix
12 13

21 22 23

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟

R , the corresponding quaternion

is computed as follows:

θ⎛ ⎞

hen the corresponding quaternion is:

()
0 1 2 3

0

[Ha n form]
[scalar vector form],

e e e e
e

= + + +

=

q i j k
e

()

3.4.5 Matrix to quater

G
1

31 32 33⎝ ⎠

1

 ()
()

0 1 2 3

0

0 1 2 3

[Hamiltion form]
[scalar vector form]
[4-tuple form]

,

, , ,

e e e e
e

e e e e

= + + +

=

=

q i j k
e

 34

())(()2

0 11 2 33
1 1e a a a= + = + +R 2

2
0

1 32 23

2 13 31
0

3 21 12

1 1 Trace
4 4

if 0,

1 ,
4

e
e a a
e a a

e
e a a

+

>

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

e

()
0

1

,

else 0,e =

2
1 22 33

1 ,
2

e a a= − +

2 1312
1 2 3

1

if 0, ,
2 2

aae e e
e e

> = =

()
1

2
2 33

2 23
2 3

2

2 3

else

if

else

 0,
1 1 ,
2

 0,
2

 0, 1.

e

e a

ae e
e

e e

=

= −

> =

= =

A rotationally equivalent quaternion is –q.

3.4.6 Quaternion to matrix

Given a unit quaternion:

0 1 2 3

0

[Hamiltion form]
[scalar vector form]

m]
,

e e e e
e

= + + +

=

q i j k
e

t then:

)
) ()

() () ()

2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2 2 2

2 2

2 2 1 2

e e e e e e e e e e

e e

e e e e e e e e e e

⎛ ⎞− + − +

()
()0 1 2 3

[4-tuple for, , ,e e e e=

he corresponding rotation matrix is

() () (
(()2 1e e e e e e e e

⎜ ⎟
− +

⎜ ⎟
⎜ ⎟− + − +⎝ ⎠ (1.29)

⎜ ⎟= + −R

 35

Since , the diagonal terms in the matrix can be re-written in the
following equivalent form:

2 2 2 2
0 1 2 3 1e e e e+ + + =

() ()
() (
() ()

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2
2 2
2 2

e e e e e e e e e e e e
e e e e e e e e e e e e
e e e e e e e e e e e e

⎛ ⎞+ − − −

)⎜ ⎟
= + − + − −⎜ ⎟

⎜ ⎟− + − − +⎝ ⎠

R

(1.30)

This equation is derived as follows. Equation (1.24) is:
 ()2 r .

This equation in matrix form (see Appendix A) is:
 2 2 2 2 S r

where

is the skew-symmetric matrix associated with e (see 1.2). The expansion of this
expression gives Equation (1.30).

3.4.7 Quaternion to axis-angle

G

0 1 2 3

orm]
[scalar vector form]
[4-tuple form]

,

, , ,

e

e e e e

= e

e corresponding axis-angle representation

+

()0 02 2e e′ = − • + • + ×r e e r e r e e

()0 1 2 3 3 3 02 2e e e e e×
⎡ ⎤′ = − − − + ⊗ +⎣ ⎦er I e e

3 2

3 1

2 1

0
0

0

e e
e e
e e

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

eS .

iven a unit quaternion

()
()

0 1 2 3 [Hamiltion fe e e e= + + +q i j k

0

=

th (),θn can be found as follows. Section

3.4.4 shows that the quaternion corresponding to axis-angle (),θn is

 cos , sinθ θ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝

q n .
2 2⎝ ⎠ ⎝ ⎠ ⎠

If , this formulation may be reversed to yield:

0 1e ≠

() ()()

()
0

2
0 02

0

, , 2 * arctan2 ,

, 2 * arctan2 1 , .
1

e

e e
e

θ =

⎛
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

n e e e

e ⎞

If 0 1e = , 0θ = and n is indeterminate. In either case, (), θ− −n is a rotationally
equivalent solution.

 36

3.4.8 r angle convention Matrix to Eule

Given a matrix in SO(3), determine the corresponding Euler

angles for a

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

M

given convention.

() () ()γ β α= z x zM R R RTo factor M in the Euler angle z–x–z rotation convention use
able 1.

nvention

T

 () () ()α β γ= z x zM Ω Ω Ω To factor M in the Euler angle z–x–z orientation co
use Table 2.

To factor M in the Euler angles z-y-x rotation convention (Tait-Bryan angles)
() () ()ψ θ φz y xR R , use Table 4.

To factor M in the Euler angles x-y-z orientation convention (Tait-Bryan angles)

=M R

() () ()φ θ ψ= x y zM Ω Ω Ω , use Table 5.

3.4.9 Euler angle convention to quaternion

T espond to the following quaternions:

he principal rotations (section 3.2.2) corr

()

()

()

cos , sin
2 2

cos , sin
2 2

cos , sin

γ γγ

β ββ

⎞⎞ ⎛ ⎞↔ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞↔ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎛

2 2
α αα

⎛ ⎞⎛ ⎞ ⎛ ⎞↔ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

z

y

⎝ ⎠
x

R z

R y

R x

or each Euler convention, multip he corresponding quaternions. Terms in the
resulting product may be simplified using the orthonormal property of the vector set x, y
and z. and various trigonometric identities.

For the Euler angle

F ly t

- -z x z rotation convention () () ()γ β αz x zR R R , the equivalent
quaternion is the product of three corresponding quaternion factors:

 cos , sin cos , sin cos , sin
2 2 2 2 2 2
γ γ β β α α⎛ ⎞ ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝
q z x

⎞
⎟
⎠

z

 37

W uation (1.20)), the
expression reduces to:
 () ()3e

hen multiplied out with the quaternion multiplication rule (Eq

0 0 1 2, , , ,e e e e= =q e
where:

0

1 cos cos sin sin sin

2 2 2 2 2
e

2 2 2

cos cos sin sin cos cos cos
2 2 2 2 2

cos sin
2 2

sin cos

e

e

2 2
γ α γ α β γ α β

γ α γ α β γ α β

γ α

⎛ ⎞ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎠

⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=

⎝ ⎠ ⎝ ⎠⎝

= +⎜ ⎟⎜ ⎟ ⎟ ⎜ ⎟ ⎜ ⎟
⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛=

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

⎜ ⎟
⎝ ⎠

3

cos sin sin sin sin
2 2

sin cos cos sin cos sin cos
2

2 2 2

e
2 2 2 2 2 2

γ α β γ α β

γ α γ α β γ α β

⎛ ⎞ −⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎞ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠

Note that is also a solution. The con

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛
= +

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

jugate −q () ()0 0 1 2, , , ,e e e e 3e∗ = − = − − −q e is the

quaternion representation of the orientation operator () () ()α β γz x zΩ Ω Ω .

() () ()ψ θ φz y xR R RFor the Euler angle z-y-x rotation convention (Tait-Bryan angles) ,
t ding quaternion factors:he equivalent quaternion is the product of three correspon

 cos , sin cos , sin cos , sin
2 2 2 2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

q zψ ψ θ θ φ φ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
y x

When multiplied out, the expression reduces to:
)3e

here:
() (0 0 1 2, , , ,e e e e= =q e

 w

0

1

2 cos sin cos sin cos s
2 2 2

e

cos cos cos sin sin sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2 2

2 2

e

e

ψ θ φ ψ θ φ

ψ θ φ ψ θ φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
ψ θ φ ψ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

3 sin cos cos
2 2 2 2

e

in
2

cos sin sin
2 2

φ

ψ θ φ ψ θ φ
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Note that is also a solution. The conjugate

⎛ ⎞
⎜ ⎟

= −⎜ ⎟ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎠ ⎝ ⎠ ⎝

−q () ()0 0 1 2, , , ,e e e e 3e∗ = − = − − −q e is the

uaternion representation of the orientation () () ()q φ θ ψx y zΩ Ω Ω . This quaternion
corresponds to the IEEE 1278.1-1995 Convention [2] orientation matrix

() () ()φ θ ψx y zΩ Ω Ω .

 38

3.4.10 Quaternion to Euler angle convention

To convert a unit quaternion

to the Euler angle z–x–z rotation convention

 ()
()

0 1 2 3

0

0 1 2 3

[Hamiltion form]
[scalar vector form]
[4-tuple form]

,

, , ,

e e e e
e

e e e e

= + + +

=

=

q i j k
e

() () ()γ β αz x zR R R , compute:

() ()()
()()

() ()()

1 3 0 2 2 3 0 1

2 2
1 2

1 3 0 2 2 3 0 1

arctan2 ,

arccos 1 2 principal value: 0

arctan2 ,

e e e e e e e e

e e

e e e e e e e e

α

β β

γ

= + − −

= − + <

= − +

 < π

t alternate solution.) (Given this solution, see Table 3 for an equivalen

This formulation assumes that ()2 20 1e e1 2≠ + ≠ . Otherwise the conversion is

indeterminate with:

()2 2
1 2case 0 : e e+ =

() ()()2 21
1 2 0 3 2 32and arctan2 ,e e e e e eβ α γ= 0 + = − − +

and

()2 2

1 2case 1: e e+ =

− () ()()2 21
1 2 0 3 2 32and arctan2 ,e e e e e eβ α γ= π = − − +

To convert to the Euler angle z-y-x rotation convention (Tait-Bryan angles)
() () ()ψ θ φz y xR R R , compute:

() ()()
()()

() ()

2 21
2 3 0 1 1 22

1 3 0 2

2 2
1 2 0 3 2 3

arctan2 ,

arcsin 2 principal value: 2 2

1arctan2 ,
2

e e e e e e

e e e e

e e e e e e

φ

θ θ

ψ

= + − +

= − − − π < <

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

 π

(Given this solution, see Table 6 for an equivalent alternate solution.)

 39

T latiohis formu n assumes that ()1 3 0 22 1e e e e− ≠ ± . Otherwise the conversion is
indeterminate with:

()

() (()
1 3 0 2

1 2 0 3 1 3 0 2

case

and

 2 1:

 arc),

e e e e

e e e e e e e eθ φ ψ

− = +

= −π 2 + = − +

and
tan2

()
()

(3 1 3and ,e e e e eθ φ ψ= π 2 − +)()

1 3 0 2

1 2 0 0 2

case 2 1:

arctan2

e e e e

e e e

− = −

= −

.5 Considerations for computational and stora e efficiency

The selection of a data representation to implement a rotation or orientation operation is
highly dependent on the memory, storage, and performance requirements of the

t. Generally,
there is a tradeoff between data storage size and computational efficiency. A data

ed to minimize real time
 animation that may need to constantly compute changing
 scene graph nodes and to manipulate large quantities of vertices.

As the hardware costs of RAM decrease, the requirements for quantity of data items in
emory often tend to increase, and in some cases approach address space limits. The

of 64-bit CPUs and operating systems will remove that address space limit.

ider the axis-angle representation that uses four scalar parameters
nd

3 g

application, as well as the hardware and operating system environmen

transmission application may ne transfer bit rate in contrast to a
computer generated
orientations between

m
introduction

Cons
a

()1 2 3, ,n n n=n
θ . This representation could also be stored using just three scalars:

 () () .
This is mputationally expensive. It requires 2 adds, 6

1 2 3 1 2 3, , , ,s s s n n nθ θ θ= =s
compact, but reconstruction is co

multiplies, 1 divide and 1 square root:

2 2 2
1 2 3

31 21 , ,

s s s

ss s

θ

θ θ θ θ

= = + +

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

s

n s

Note also that the recovered angle is non-negative so that if the starting θ is negative,
terms of the starting valu

equivalent pair:
then recovered axis-angle pair is (in es) the reversed sign

(), θ− −n .

tion formula
requires both the sine and cosine of the angle. Thus, in a computationally intensive
application, it may be advantageous to compute the expensive trigonometric values
once and store them as part of a five scalar axis-angle rotation data storage type:
 () ()

If many points are to be rotated, it should be noted that Rodrigues' rota

1 2 3 4 5 1 2 3, , , , , , ,sin ,coss s s s s n n n θ θ=
If the value of

.
θ itself is required often, it can be stored as a sixth scalar. Otherwise, θ

 40

()ctan2 ,s s . Thcan be reconstructed as 4 5arθ = e ()1 2 3, , ,sin ,cosn n n θ θ data t

also advantageous i
ype is

n converting to and from quate ee 3.4.4 and
3.4.7), because half angle / double angle trigono

tionally expensive than trigonometric and inverse trigonometric functions.

The composition of two rotations in axis-angle representation is trivial if the two rotations
 the same axis. Otherwise, conversion to and from matrix or quaternion

representation may be required.

Storage of the Matrix representation requires nine scalars. This representation has the
computational advantage that vector rotation is just a matrix-vector multiply operation

quiring only scalar multiply and add instructions. The composition of two rotation
operators is also just a matrix multiplication. This simplicity makes the matrix

s
int

y importance of
sured data or

3.6 Interpolation issues

terpolating between two orientations is important in some types of applications. In
orientations are captured at a fixed rate. Some simulated

visual systems need orientations at a higher frame rate. These intermediate visual

 In
mations, fram
 are gen ed by time interpolation between key frames.

le
ion

< 1 will, in general, not be tation matrix.

rnion representation (s
metric identities are less

computa

share

re

representation attractive in many applications in spite of the large storage size.

The quaternion representation is compact requiring only four scalars for storage.
Quaternion multiplication requires only scalar multiply and add instructions. A rotation
operation requires two quaternion multiplications and a composition operation require
only one quaternion multiply. Compared to Matrix representation, both quaternion po
rotation and quaternion composition require fewer add and multiply instructions.
Quaternions also have an important computational advantage with respect to
interpolation (see below).

The Euler angle conventions are compact, requiring only three scalars for storage, but
are computationally inefficient – conversion to and from another type of representation is
generally required for rotation and composition operations. An additional disadvantage
is the presence of singular points (see 3.2.3.3 - Gimbal lock). The primar
the Euler angle conventions are that many physical systems provide mea
are controlled by data in an Euler angle convention.

See [3] for a discussion of the computational costs of various conversions between
representations.

In
distributed simulations, entity

frame rate orientations are interpolated with respect to time between pairs of captured
orientations. Projecting state forward in time (dead reckoning) is a related problem.
computer 3D ani key es are generated. Intermediate frames at the higher
render frame rate erat

Linear interpolation on the parameters of a representation is straightforward, but the
resulting operator valued function of the interpolation parameter may have undesirab
properties. Interpolating Euler angles may produce very indirect and un-natural rotat
sequences and may involve gimbal lock. A linear interpolation of rotation matrices,
(a ro)t t t− + <1 21 , 0M M

 41

Ken Shoemake defined an interpolation between a p t produces a
uniform rate of rotation change with respect to the interpolation variable. This
interpolation scheme is known as Spherical linear interpolation (SLERP), and is widely
used in computer animation. In [4], SLERP is extended to allow second order
smoothness in a sequence of three or more key frame orientations using splines.

air of quaternions tha

Given two quaternions, 0 1 and q q , the SLERP interpolated value ()t0 1Slerp , ,q q is
given by:

() ()

()()
()

()
()

t
t

t tθ θ
θ θ

−=

−
= +

00 1 0 1

0 1

1Slerp , ,

sin 1 sin
,

sin sin

q q q q q

q q

where: 0 1t≤ ≤ and ()θ = •0 1cos q q and this dot product is the 4-dimensional dot
product.

3.7 Error analysis

One approach to error analysis is to note the behavior of the magnitude of first derivative
terms with respect to input parameters. That study is beyond the present scope. It will
be noted here that in the case of the various Euler angle conventions such magnitudes
tend to blow up near gimbal lock singularities. In contrast, in the case of unit
quaternions, the magnitudes are uniformly bounded. In [5], parameter rates, Jacobians
and linearization are treated for these representations.

 42

4 Rotational kinematics

4.1 Rotational velocity and acceleration

Consider first the special case of rotation of a point about a fixed u a
differentiable function of time,)

nit vector axis s a n
(()()θ= r . Assume that the rotation beg0t tnr R ins at

 so that () and ()0t = 0 0θ = 00 =r r . By the alternate form of Rodrigues’ rotation
formula (Equation (1.3)):

()() () ()() () ()0 0 0r 01 cos sint tθ θ θ= = + − × × + ×nr R r r n n n r .

The rotational velocity at time is then: t

() ()() () ()()

() () ()

0 0 0sin
dt

× × + ×n n r n r

0 0

1 cos

sin cos

d dt
dt

d d
dt dt

θ θ

θ θθ θ

= + −

= × × + ×

r r

n n r n r

()Thus the velocity is the sum of two vector components. One component 0n n r

points toward the rotation axis and the other 0

× ×

×n r is tangent to the arc or rotation (see
Figure 8).

Figure 8

ω x r0

r0

ω

n x n x r0

n

 43

Evaluating at gives the instantaneous rotational velocity: 0t =

 () 0 0 00
dt dt

θ= × = × = ×r n r n r ω r , where
d dθ •

θ
•

=ω n .

The rotational acceleration is the second time derivative:

() () () ()

() () () () ()

0

0 0

2

2 2

2 2

sin

cos sin sin cos .

d d d d
dt

d d d d
dt dtdt dt

θ θθ

θ θ θ θθ θ θ

⎛ ⎞
0

2
cost

dt dt dt
θ

θ

= × ×⎜ ⎟

⎛ ⎞ ⎛ ⎞
= + × × + − + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

r n r

n n r n r

Evaluating at gives the instantaneous rotational acceleration

•

× × + ×n n r n r

The first term in the right hand expression points towards the rotation axis as is called

r with the initial condition

+ ×
⎝ ⎠

n n r

0t = α :

•

= =α ω ()0 0.θ θ
••

the centripetal acceleration.

In the general case (in which the rotation axis may vary as function of time), we set
() ()t t=r R 0 () 3 30 ×=R I (that is, () 00 =r r). To compute

()0d
dt

=
R

, we note that as a rotation matrix we have
•

R () (3 3
Tt t× =I R R) so that:

() ()

() () () ()

3 3
T

T T

d d t t
dt dt

t t t t

×

••

⎡ ⎤= ⎣ ⎦

= +

I R R

R R R R0

At , this expression reduces to , so is skew-symmetric and

must be in the form
ω ω−

= where . Thus

we have

0t = () ()T0 0
••

= −R R ()0
•

R

()
3 2

3 1

2 1

0
0 0

0
ω ω
ω ω

•
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

ωR S ()1 2 3
T, ,ω ω ω=ω

() 00
dt

= = ×ωr S r ω r .
d

 44

4.2 Orientation (Ω), angular velocity (ω), and angular acceleration
(α)

 three cases, of increasing complexity, of converting the position (and
motion) of a point described by a body-fixed coordinate system to its description in a

 motion, and free motion.

Static case

We consider

space-fixed coordinate system. The cases are static, rigid

:
Consider a rigid body with a body-fixed coordinate system origin at some point C on the
body and let P be another point on the body with body-coordinate vector bP. We are
given sC the space-fixed coordinate vector of point C and the orientation Ω of the body
coordinate system with respect to the space coordinate system (see Figure 9).

 = +s s Ω b .
e term Ω b

b . The implementation of this
orientation. For example Ω b m

 Rodrigues' rotation fo

• by a quaternion operatio

• by matrix multiplication u
body coordinate system

• with a matrix or a quatern
specification of the orien

v

The space coordinate vector sP

In this expression, th

• by

P PC

P

P

 P

bP

s

y
w

P

sC

x
z

u
C

P

Figure 9
e point P can then be comp

 is to understood as tation operator ac
operation may depend on the specification of the

ay be computed:

ientation was specified as an axis-angle,

n if the orientation was specified as a quaternion,

sing the directional cosine matrix computed from the
basis vectors in space coordinates, or

ion computed from an Euler angle convention
tation.

for th uted as:

an orien ting on

rmula if the or

 45

While this comment is applicable to all such operations, we shall use matrix and vector
notation in all of the fo lowing cases. l

Rigid motion case:
In this case the body is in motion so that sC and Ω are functions of time and we have:

() () ()t t t= +s s Ω b

P PC

t t= + ×v ω b

t

t

• •

Note that is time independent because it is in fixed position on the rigid body. The
orientation operator

 ()
() () () () ()()

P

P P

P C

P C

t

t t t t t= + × + × ×

v

a a b ω ω bα

where:

() ()

() () () ()

() () () ()

() ()

() ()

P P C C

P P C C

, ,

, ,

, and

.

t t t

t t t

t t

t t

• •

•

•

= =

= =

=

=

v s v s

a v a v

ω Ω

ωα

Pb
Ω converts directions from the body coordinate system to the space

ω and coordinate system, so that its derivatives α have space coordinate system
values. The corresponding values in body coordinates are obtained with the inverse
operator TΩ :

t t

t t

=

=

ω Ω ω

Ωα α

Free motion case

() () ()
() ()

B

B

T

T

t

:
In this case, the point P is moving with respect to both coordinate systems. In particular,

=b b is not identically zero. We have: () ()P, Pt t
•

v

() () () ()
() ()) () ()

P P

P

C

P PC

t t t t

t t t t

= +

= + + ×

s s Ω b

v v v ω b(
() () () () () () () ()() ()

, tb

whe :

In t e

()P PP P, P,C 2t t t t t t t t t t= + + × + × × + ×b ba a a b ω ω b ω vα
re

•

() ()P, P, .t t=b ba v

he xpression for ()P ta the term () () ()()Pt t t× ×ω ω b is identified as the ce

ation and the term ()
ntripetal

acceler ()P,2 t × bω v t is identified as the Coriolis acceleration.

 46

5 Rigid body dynamics
Consider a rigid body

elements V with mass density function

 consisting of discrete particles of mass and/or volume iP im
12 ρ . ()i ts will denote the coordinate vector at

time t P in a space coordinate system with respect to the orthonormal basis
, ,x

 of point i

y z and b will denote the same m with respect to the
rmal basis , ,u v w attached to the body (body-fixed). Because the body is rigid,

coordinate vectors are independent

l mass of the body is:

i point in a body coordinate syste
orthono

ib of time.

i
iM m dρ= + V∑ ∫∫∫V

. The tota

() () ()() ()CM
1

i
i it m t t t

M
ρ

∈

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∫∫∫s

s s s
V

. The center of mass is located at ds s

We further require that the origin of the body coordinate system coincide with the center
of mass. As a consequence, in body coordinates, the center of mass is the body
coordinate system zero vector:

 ()1
i

i im d
M

ρ
∈

⎛ ⎞= +b

 th osine matrix of with respect to

⎜ ⎟
⎝ ⎠
∑ ∫∫∫b

b b b
V

0

If ()tΩ is e c , ,u v w , ,x y z , then

 () () ()CMi it t t= +s s Ω b and () () ()CM
T

i it t t⎡ ⎤= −⎣ ⎦b Ω s s ,

and velocities are given by"

it t tω

=

= + ×v Ω b

ts is the rotational velocity in space coordinates.

() ()
() () () ()()CM

i i

i

t t

t t t tω

•

=

+ × −

v s

v s s

() () ()()B

where ()v

() ()CM andt t ω
•

=

 densi ay expressed as either

a

12 At a point P the mass ty ()Pρ m function of a space coordinate

()SPACEρ s or a body coordin te () the
s it clear which function is intended.

BODYρ b . This notational distinction will not employed as
context make

 47

The linear momentum of a particle is defined by v . The total linear

)

i iim m
•

= =p s
momentum of the body is:

() () (() ()

() ()

() ()
()

CM

CM

CM

i i

i

i i i

t d

m d t m d

M t t

M t

ρ
•

∈ ∈

⎢⎣
⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

=

∫∫∫b b

s s

Ω b b b b

s Ω

v

V V

0

This result:

() () () () ()

() ()

CM

i

i

i i

i

m t t t

m t t t t d

t

ρ

ρ

ρ

• •

∈

• • • •

∈

•

= +

⎡ ⎤ ⎡ ⎤= + + +⎥ ⎢ ⎥⎦ ⎣ ⎦
⎛ ⎞

= +

∑ ∫∫∫

∑ ∫∫∫

∑ ∑∫∫∫

s

b

P s s

s Ω b b s Ω b b

b b s

V

V

• •

 ()M t=P v

shows that total linear momentum is independent of orientation or rotational velocity.

If a point b with mass m is rotating about an axis with (scalar) rotational rateω , in a circle
f radius r, then its speed is rω and its scalar linear momentum is ()p m rω=

 multiplied by the length
o . The
scalar angular momentum L of b is its scalar linear momentum r
of its moment arm: 2L rp r mω= = The term in this e sion tha
the geometric distribution of mass with respect to the rotation axis is the scalar mome

. xpres t depends only on
nt

f inertia 2o I r m= . We then have L Iω= . If the rotational axis etermined by a unit
ector n and if the angle betwee nd b is

is d
v n n a ϕ , then we note that the length of the

sinr ϕ= bmoment arm is = ×b n . This tivates the following definitions.

The rotational momentum of particle is defined as

mo

 iP () ()i i it t= ×L b p
perpendicular to both th

. Note that the
rotational momentum is a vector quantity that is e moment arm

 and the momentum vector p . The rotational momentum L may also be expressed
directly in terms of the rotational velocity:

ib i i

() () () ()()Bi i i i i i it t m t m t= × = × = × ×L b p b v b ω bi .

al rotational momentum

The tot of the body is defined as:

() ()() () ()()B B B
i

i i it m t tρ= × × + × ×∑ ∫∫∫L b ω b b b ω b b d

The subscript B indicates that the vector values of ()B

()B tω vari ll the summation and integration in the above
expression needs to be re-evaluated at each time t. However, the above expression is

tL are represented in body

coordinates. Since es in time, a

 48

linear in ()B tω and, as shown in Appendix D, it m out to the equival
form:

ay be factored ent

where

() ()B B Bt t⊗=L I ω

B⊗I is the matrix defined as:

 () () ()B 3 3 3 3
i

i i i i im dρ⊗ × ×⎡ ⎤ ⎡= • − ⊗ + • − ⊗⎣ ⎦ ⎣∑ ∫∫∫I b b I b b b b b I b
V

 ⎤⎦b b

his matrix is the moment of inertia tensor13. The importance of this matrix is that is
time independent and needs to be computed only once and reduces the computation of

(

T it

)B tL to nine multiplications and six additions. Appendix D expands B⊗I in terms of
body coordinate components:

11 12 13

B 12 22 23

13 23 33

I I I
I I I
I I I

⊗

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

I

where:

() () ()

() () ()

() ()2 2
,1 ,2

, ,

i i ()

11 ,2 ,3 2 3

2 2 2 2
22 ,1 ,3 1 3

2 2
33 1 2

1 2 3

1 2 3

1 2 3

, ,

, ,

i i
i

i i
i

i

i

i

i

2 2 2 2I m b b b b b b b d

 I m b b b b b b b d

I m b b b b b d

ρ

ρ

= + +

= +

∑ ∫∫

∑

b

b

b b

ρ= + + +

+

+ +

∑ ∫∫∫

∫

∫∫∫

b

() ()

) ()

12

23

,1 ,2 1 2

2 3 2 3,
i

i

i i i

(

() ()13 ,1 ,3 1 3 1 3, ,
i

i i i

1 2 3

,2 ,3 1

2

, ,

,i i i

I m b b b b b db b

I m b b b b b b b d

I m b b b b b b dρ= − −∑ ∫∫∫ b

()
()

,1 ,2 ,3

1 2 3

T

T

, ,

, ,

i i i ib b b

b b b

=

=

b

b

b

ρ

= −

−

∑

∫∫∫

The coordinate component values depend on the choice of the basis for the body
basis is that it is orthonormal

ρ−

= −

∫∫∫

∑

b

b

coordinate system. The only constraint14 imposed on the

13 The expression for B⊗I is bilinear in body coordinates ay therefore be regarded as
tensor of order 2.

 and m a

14 Some applications impose additional constraints. For example, in the IEEE 1278.1-1995
standard the first axis in the entity coordinates system must point forward.

 49

with its origin at the center of mass. The matrix B⊗I is symmetric, thus there exists som
basis s

e
atisfying the constraint which will diagonalize the matrix and put the diagonal

elements (the eigenvalues) in increasing order. That is, there exists a choice of basis for
ich:

330 0 ,
0 0

wh

11 0 0I
 B 22 11 22

33

andI I I I
I

⊗
⎜ ⎟= ≤ ≤⎜ ⎟
⎜ ⎟
⎝ ⎠

I .

leme

⎛ ⎞

The coordinate axes of this basis are called the principal axes15 and the diagonal
e nts 11 22 33and, ,I I I are called the principal moments of inertia. The use of this

basis reduces the computation of ()B tL to three multiplications.

The total rotational momentum in space coordinates is given by:

t .

 coordinates, the moment of inertia tensor is time dependent and is computed
as:
 T t

If, in the space coordinate system, the external force acting on particle is

and/or the external force acting on a volume element is

In space

() () ()t t⊗=L I ω

() () (),Bt t⊗ ⊗=I Ω I Ω

iP ()i tF

() , then the total force
acting on the body is:

,tf s

() () (),
i

it t
∈

= +∑ ∫∫∫s V
t dF F f s . s

If these forces are expressed in the body coordinate system as ()Bi tF and ,
then the total force acting on the body is:

()B ,tf b

() () ()B B B ,
i

it t
∈

= +∑ ∫∫∫b V
t dF F f b b .

The analogue for external rotational force is torque and it is defined as:

() () ()() () () ()() ()

() () ()B B B

CM CM ,

,
i

i

i i

i i

t t t t t t

t t t d

= − × + − ×

= × + ×

∑ ∫∫∫

∑ ∫∫∫

τ s s F s s t df s s

τ b F b f b b

V

V

15 Not to be confused with principal rotations.

 50

In Newtonian physics the momentum of a particle is preserved unless an external force
acts on it in which case the relationship between force and momentum is:

 () ()i i
dt t
dt

=F P

It follows tha and total momentum is: t the relationship between total force

 () () ()d dt t M
dt dt

= = tF P v .

Similarly for torque we have:

() () ()

() ()

() () ()()

()

B B B

B

B

B

,

,

i i

i i

i i

t t t d

d dt t d= × + ×∑b p b f b b
dt dt

d t t d

d t
dt

ρ

×

⎡ ⎤= × + × ×

=

∫∫∫

∫∫∫

∑ ∫∫∫

b f

b p b b ω b b

L

= × +∑τ b F b b

dt ⎣ ⎦

In term of rotational inertia we have:

 () () ()d dt t t
dt

= =τ L I ω .

dt⊗

 51

6 Use cases

6 le.1 DIS Euler ang s

This use case is illustrated with the problem of converting aircraft orientation, as
o WGS 84

Geocentric (DIS Euler angles).

onsider an aircraft that at time t0 is ationary on an airfield. Its inertial system is
initialized so that the artificial horizon is level with the ground and the instrument panel

rection of local North. For convenience, its location at t0
he resulting inertial system readouts of roll, pitch and yaw

now indicate the orientation of the aircraft with respect to a Local-centric Euclidian
Frame with origin at ground zero, and x-, y- and z-axes pointing local north, east and
down respectively. This linear-space frame is denoted by E0. At some subsequent time,
the aircraft taxies to the runway, takes off and maneuvers, and at time t1 the roll, pitch
nd yaw are read out. These values are to be converted to DIS Euler angles.

The t1 roll, pitch and yaw values correspond to the orientation of one linear-space frame
with respect to another. One is the entity space (the Euclidean frame used for the
aircraft), see Figure 7. The other is the E0 frame. Thus the roll, pitch and yaw values
are the Tait-Bryan angles representation of the orientation of the aircraft coordinate
frame with respect to the E frame:

 .

Let L denote a range coordinate frame consisting of Local Tangent Frame Euclidean
SRF. If we assume that the origin of L is near, or the same as, ground zero (the origin of

0), then E0 and L are related as shown in the Table below:

Axis E0 coordinate frame local tangent frame L

indicated by its onboard inertial system, to Tait-Bryan angles with respect t

C st

compass north points in the di
shall be called ground zero. T

a

0

()t →Ω Aircraft E0

E

x points to local North points to local East

y points to local East points to local North

z points to local down points to local up

This relationship is expressed as the orientation of E0 with respect to L. Some
representations of Ω are:

 Axis-angle:

 →ΩE0 L

→E0 L

() 1 1, 0
2 2

θ
⎛ ⎞⎛ ⎞= π⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

n ,

 52

 Tait-Bryan: () (), , 0, 2φ θ ψ −π= π,

 () () ()
0 1 0

0 1 0 0
⎛ ⎞
⎜ ⎟π= π − = Matrix:
0 0 1

→ ⎜ ⎟2
⎜ ⎟−⎝ ⎠

x y zE0 LΩ Ω Ω Ω

T1 10, 0
2 2→

⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟

⎛ ⎞

⎝ ⎠
 Quaternion:

⎝ ⎠
ΩE0 L

Let W denote the WGS 84 geocentric SRF. The orientation of L with respect W is
denoted as:

 →ΩL W .

The SRM specifies the computation of the matrix representation of this orientation based
on the WGS 84 geodetic coordinate for the origin of L.

The orientation of the aircraft with respect to W is then given by:

 () ()t t→→ =Ω Ω Ω ΩL W EAircraft W o → →0 L Aircraft E0o at time t.

 this equation the ΩIn symbols are orientation operators. The operator compositions
indicated by o are matrix multiplications in the case of matrix representation, or

the orientation in the Euler angle x–y–z orientation convention.

6.2 Rigid b

In the notation of section 5, define the state of a rigid body system at time as the
ensemble of the cation , the o ear and
angular momentums:

quaternion multiplication in the case of quaternion representation, etc.

The DIS Euler roll, pitch and yaw values at time t are then just the Tait-Bryan angles for
()t →Ω Aircraft W

ody integration of state

t
 lo of the center of mass rientation, and the lin

() () () () (){ }CMs , ,t t≡Ò

all tim

,t t tΩ P L

The problem is to compute for some sm e increment ()t t+ ∆Ò t∆ given the

previous state ()tÒ and system specific functions for total force and torque. In the most
general case, force and torque are functions of time and the state variables. That is:

(

() ())
() ()(),

t

t t t=τ τ

Ò

Ò

,t t=F F

 53

This problem has s
states are locally "dead reckoned" in

everal applications. For example, in distributed simulations, entity
time steps t∆ until authoritative data has been

distributed. In computer generated animations, o ject states are integrated in steps of
t∆ equal to the

to end.

One of many approaches to this problem, is to realize the integration step by setting

each state variable to its approximate value

b
frame rate of the animation and covering the time interval of a scene

from beginning

()t t+ ∆X () ()d t
t t

dt
+ ∆

X
X , where

. The error of this approximation decreases as tCM, , , or =X s Ω P L ∆ approaches zero.

() may be approximated by setting:

In particular t t+ ∆Ò

() () ()

() () () ()
() () ()
() () ()
t t t t t+ ∆ = + ∆P P F

CM CM

t

tt t t
M

t t t t t

t t t t t

∆
+ ∆ = +

∆ = + ∆

+ ∆ = + ∆

ω

s P

Ω Ω S Ω

L L τ

In the expression for

ts

+

Ω the value ()tω is required to determine the corresponding

mmetric matrix skew-sy ()tωS . That requires two auxiliary com

t t t=ω I L

n for t t+ ∆Ω e
ntation matrix

rnion. This will lead to undesirable

putations.

() () ()1 1

,B

1

Tt t t− −
⊗ ⊗

−

=I Ω I Ω

() () ()⊗

The computatio) , like the other computations, is approximate. Th (
approximate value may fail the criteria for an orie
(3 3

Tanddet 1, ×= =Ω Ω Ω I), or for a unit quate

results in subsequent iterations, therefore the approximate ()t t+ ∆Ω value needs t
adjusted to satisfy the criteria. If the

o be
Ω operator is represented with a matrix, this

adjustment can be computationally expensive. This is on e popular use of
unit quaternions. A quaternion is adjusted to a unit quaternion simply by dividing by its
calar modulus.

e reason for th

s

 54

7 References

ISO/IEC 18026:2006(E) -
[1]

 Information technology — Spatial Reference Model (SRM),
International Standard ISO/IEC 18026,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[2]
istributed Interactive Simulation – Application Protocols, Std 1278.1-IEEE Standard for D

1995 standard.

[3]
David Eberly, Rotation Representations and Performance Issues, January 2002, Magic
Software, Inc.

[4]
en Shoemake, Animating rotation with quaternion curves, Proceedings of the 12th

annual conference on Computer graphics and interactive techniques table of contents,
pp245 – 254,1985 ACM

[5]
e e: E

K

James Diebel, Repres nting Attitud uler Angles, Unit Quaternions, and Rotation
Vectors, Stanford University, California, diebel@stanford.edu, 20 October 2006

 55

Appendices

Ap

Definition:

 ()T, ,u v u v u v u v u v u v× = − − −u v

pendix A – Properties of the vector cross product

2 3 3 2 3 1 1 3 1 2 2 1

Note that × = − ×v u u v so that the cross production is not a commutative operation.

θ× = sinu v u v

where θ is the angle between the two vectors.

The

 () () ()× × = • − •u v w u w v u v w

 following identity is called Lagrange’s formula:

oduct can be computed as a matrix multiplication. For each vector there

0u u

The cross pr

corresponds a skew-symmetric matrix
3 2

3 1

0
0
u u

u u
−⎛ ⎞

⎜ ⎟

u

2 1

= −⎜ ⎟uS such that × =u v
⎜ ⎟−⎝ ⎠

S v .

A special case of Lagrange's formula is:

u

() () ()× × = • − •u u w u w u u u w .

If) , then:

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

() (1 2 3 1 2 3
T T, , , , ,w w w u u u= =w u

() ()

()

1

1 1 2 2 3 3 2

3

1 1 1 1 2 2 1 3 3

2 1 1 2 2 2 2 3 3

3 1 1 3 2 2 3 3 3

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

u
u w u w u w u

u

u u w u u w u u w
u u w u u w u u w
u u w u u w u u w

u u u u u u w
u u u u u u w
u u u u u u w

⎛ ⎞
⎜ ⎟• = + + ⎜ ⎟
⎜ ⎟
⎝ ⎠

+ +⎛ ⎞
⎜ ⎟= + +⎜ ⎟
⎜ ⎟+ +⎝ ⎠
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

= ⊗

u w u

u u w

 56

It follows that:

() () ()× ×u u w

() () 3 3×⎡ ⎤

= ⊗ − •

= ⊗

u u w u u w

w u we also have:

 ⎡ ⎤× × = • − ⊗⎣

− •⎣ ⎦u u u u I w

Since ×u w = − ×

() () 3 3× ⎦u w u u u I u u w

lso, substitutingA , we have × = uu v S v () () () 2× × = × = = uu u uu u w u S v S S v S v .
Therefore:

 () ()2 ⎡ ⎤3 3×= ⊗⎣ ⎦uS u

ppendix B – Derivation of Rodrigues’ rotation formula

− •u u u I .

A

Let n be a unit vector and θ a rotation angle. The point r is rotated around the axis
determined by n through angle θ to the rotated point ′r . To compute ′r in terms of

, , andθ ′n r , consider first the special c
unit vector m that is perpendicular to b y:

ase of a point that is perpendicular to n . A
oth s and n n b

s
 is give

1 1

×m n s n s since= × =
×n s s ()sin 2

π× = =n s s

n s .

θ
 s

s’

m

sin(θ)||s||m

cos(θ)s

Figure B.1

 57

The point s rotates to the point ′s in the plane spanned by and . The right triangle
in Figure B.1 has a hypotenuse of length

m s
s and sides of lengths ()sin θ s and

()cos θ s . It follows that

() () () ()cos sin = +s m cos sinθ θ θ θ′ = + ×s s s n s .

sum

s

s’

n

θ

θ

r'

 (r n)n .
r

In the general case, let ()= − •s r r n n . Then, as shown in Figure B.2, r is the vector

 of s with its component in the vector n direction: ()= • +r r n n s . Since ()•r n n

is on the axis, it doe nder the rotation and son s not change u ()′ ′= • +r r n n s .

Substituting () ()′s s scos sinθ θ= + ×n gives: () () ()′ cos sinθ θ= • + + ×r r n n s n s .

Substitute ()() ()× = × − • = × − • × = ×n s n r r n n n r r n n n n r

()
, and substitute

 to get = − •s r r n n () () ()() ()cos sin .θ θ′ = • + − • + ×r r n n r r n n n
lt we have Rodrigues’ rotation formula:

r Simplifying
the last resu

 () ()() () ()cos 1 cos sinθ θ θ′ = + − • +r r r n n ×n r

Matrix form:
As a consequence of Lagrange’s formula, () () () and since

is a unit vector, () and we have

× × = • − •n n r n r n n n r n

1• =n n () ()• = × × +r n n n n r r . Substituting for this
term in Rodrigues’ rotation formula yi

re B.2 Figu

elds the following alternate form:

 58

() ()()

() ()
()()

cos 1 cos sin

1 cos

θ θ θ

θ

′ ⎡ ⎤= + − × + + ×⎣ ⎦
+ −

r r n r r n r

r () ()sin θ

×

= × × + ×

n

n n r n r

ubstituting with the matrix form of the cross product gives th atrix form of the
formula:
S e m

()() ()3 3
21 cos sinθ θ×

⎡ ⎤′ = + − +⎣ ⎦n nr I S S r , where
3 2

3 1

2 1

0
0

0

n n
n n
n n

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

nS is the skew

matrix corresponding to n .

Appendix C – Quaternion operators on 3D Euclidean space
derivation

Given a unit quaternion this appendix provides the derivation of the equality:

which shows that the quaternion operation

()0,e=q e

() () ()()()2
0 00, 0, 2 2e e∗ = − • + • + ×q r q e e r e r e e r

∗p qa pq transforms a "pure imaginary"
quaternion to another "pure imaginary" quaternion and that the imaginary part r is

2+ •e r e r etransformed to (2
0 02e e− • + ×e e r where) () ()0, .e=q e

()0

()0,q r

Substitute

() ()) () ()()
()

) () ()

0 0

0 0

0 0

0 0 0

0 0

0

left multiply:

right multiply

, 0, ,

0 , ,

,

e e

e e

e e e

e e

e

∗ = −

= − • + × −

⎞
⎜ ⎟=
⎜ ⎟+ × + − • − + + × × −⎝ ⎠
⎛ ⎞− • + + × •
⎜ ⎟=

× + • − + × ×

q e r e

e r r e r e

r e r e r e r e r e

e r r e r e

e r e r e r e r

, :e=q e

() () ()

() ()

() ()
:

,e e⎛ − • − + × • −e r r e r e

(

(()0 0e e⎜ ⎟+⎝ ⎠r e

 59

d

()
() () (()

0 0

0 0 0 0)

istribute terms:

,e e

e e e e

⎛ ⎞− • + • + × •
⎜ ⎟=
⎜ ⎟+ × + • − × − × ×⎝ ⎠

e r r e e r e

r e r e r e r e e r e

))

2
0 0 0

0 0

since: is perpendicular to

and: Lagrange's formula

,

 , 0,

e e e

e

= × • + × + • − × − × ×

× × • =

− × × = × × = − •

× + • − × + • − •

e r e r e r e r e r e e r e

e r e e r e

e r e e e r e r e e e r

r e r e r e e r e e e r

simplify:

() () ()()()
() ()

() () () () []
() () ()((2

00, e e

+ •

= +r e

() () ()()()2
0 0

simpli

0, 2e e= + • + × + • − •r e r e e r e r e e e r

() ()2

since:

fy:

e e− × = + ×

− •

r e e r

e e r

 total angular mome s in
 As shown in Appendix A:

()()0 00, 2 2e e= + • + ×e r e e r

0 0

Appendix D – Moment of inertia

The definition of ntum L is a summation and/or integration of term
form ()× ×b ω b .

 () () ()3 3×⎡ ⎤×b × = • − ⊗⎣ ⎦ω b b b I b b ω .

Substituting for this expression in the definition of total momentum yields:

⎤⎦ b

Expressed in coordinate components, the expression

() () () ()3 3 3 3
i

i i i i it m dρ× ×

⊗

⎧ ⎫⎡ ⎤ ⎡= • − ⊗ + • − ⊗⎨ ⎬⎣ ⎦ ⎣⎩ ⎭
=

∑ ∫∫∫L b b I b b b b b I b b ω

I ω

V

() ()3 3×⎡ ⎤• − ⊗⎣ ⎦b b I b b is:

 60

2 2 2 2 ⎞
⎟
⎟
⎟
⎠

Appendix E – Matrix to axis-angle derivation

If is a rotation matrix, then

() ()
1 2 3 1 1 2 1 3

2 2 2 2
3 3 1 2 3 2 1 2 2 3

2 2 2 2
1 2 3 3 1 3 2 3

2 2
2 3 1 2 1 3

2 2
2 1 1 3 2 3

2 2
3 1 3 2 1 2

0 0
0 0
0 0

b b b b b b b b
b b b b b b b b

b b b b b b b b

b b b b b b
b b b b b b
b b b b b b

×

⎡ ⎤⎛ ⎞ ⎛+ +
⎢ ⎥⎜ ⎟ ⎜

⎡ ⎤• − ⊗ = + + −⎢ ⎥⎜ ⎟ ⎜⎣ ⎦
⎢ ⎥⎜ ⎟ ⎜+ +⎝ ⎠ ⎝⎣ ⎦
⎛ ⎞+ − −
⎜ ⎟

= − + −⎜ ⎟
⎜ ⎟− − +⎝ ⎠

b b I b b

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

R

() ()() ()3 3cos 1 cos sinθ θ×
⎡ ⎤= + − ⊗ +⎣ ⎦nθR I n n S

r some unit vector and angle (),θnfo (see 3.2.1.1, alternate matrix form of Rodrigues’

The transpose operator is linear and since

rotation formula).

3 3×I and ⊗n n S are symmetric and n is

skew-symmetric, it follows that:

()T 2sin θ− = nR R S .

The trace operator is also linear and since ()Trace 0=nS and

()Trace 1⊗ =n n ,

() () () ()() () () () (Trace cos 3 1 cos 1 sin 0 1 2cos)θ θ θ= + − + = +R θ .

Therefore
()Trace 1

arccos , 0 .
2

θ θ π
⎛ ⎞⎛ ⎞−

= ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

R
 ≤

 61

If 0 θ π< < , then sin 0θ > and

()

()

3 2

3 1

2 1

12 21 13 31

21 12 23 32

31 13 32 23

T
0

10
2sin

0

0
1 0

2sin
0

n n
n n
n n

a a a a
a a a a
a a a a

θ

θ

−⎛ ⎞
⎜ ⎟ ⎡ ⎤= − = −⎜ ⎟ ⎣ ⎦
⎜ ⎟−⎝ ⎠

− −⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

nS R

−

R

herefore:

T

()

1 32 231
n a a−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
2 13 31

3 21 12

2sin
n a a
n a a

θ
= = −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

n .

Alternatively, let , and let
32 23

13 31

21 12

a a
a a
a a

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

v 1 .=n v
v

If 0θ = , there is no rotation so ndeterminate.

If

n is i

θ π= , then the alternate matrix form of Rodrigues’ rotation formula reduces down to:

[]3 3

2

2×= − + ⊗R I n n

1 1 2 1
2

2 1 2 2 3
2

32 1 2 2
2 2 1 2
2 2 2 1

n n n n n
n n n n n
n n n n n

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟

3 1 3 2 3 −⎝ ⎠

Therefore: () () ()2 2 2
1 11 2 22 3 33and1 2, 1 2, 1 2.n a n a n a= + = + = + Find the maximum

, ,a a a and use it to find one coordinate component of n and then derive the

Case: is the maximum. Let

of 11 22 33and
components from it.

11a () 1312
1 11 2 3

1 1

1 2, ,
2 2

aan a n n
n n

= + = = .

Case: is the maximum. Let22a () 3212
2 22 1 3

2 2

1 2, ,
2 2

n a n n
n n

= + = = .
aa

Case: is the maximum. Let33a () 13 23
3 33 1 2

3 3

1 2, ,
2 2

n a n n
n n

= + = =
a a

.

It is equivalent (multiply by the appropriate factor), but computationally more
efficient, to compute n as follows:

2 in

 62

Ca the ma Let v

Case:

se: is ximum. .

Case: is the maximum. Let
T

 is the maximum. Let
T

Then:

 11a ()11 12 13
T1, ,a a a= +

22a ()21 22 23, 1,a a a= +v .

33a ()31 32 33, , 1a a a= +v .

1
=n v

v
.

 63

INDE

4-tuple form, 27

arctan2 , 3

X

 function

attitude, 7

axis-angle representation, 10

body-fixed, 12

Cardano angles, 16

center of mass, 48

centripetal acceleration, 47

coordinate frame rotation, 9

Coriolis acceleration, 47

cross product, 2

direction cosine matrix, 7

dot product, 2

elementary Rotations, 11

Euler angle convention, 12

Euler angle x–y–z orientation
convention, 16

Euler angle z–y–x rotation convention,
16

Euler angle z–y–z orientation
convention, 15

Euler angle z–y–z rotation convention,
13

Euler angles z-x-z convention, 12

Euler angles z–y–x convention, 15

Euler parameters, 30

Euler’s rotation theorem, 8

Euler-Rodrigues parameters, 30

Hamilton form, 26

identity matrix, 3

Inner product, 2

length of a vector, 2

line of nodes, 12

linear momentum, 49

local tangent frame, 4

modulus, 28

moment of inertia tensor, 50

nautical angles, 16

norm, 2

norm (quaternion), 28

normalized, 3

nutation angle, 12

orientation, 6

orientation operator, 9

outer product, 2

pitch, 16

position vector rotation, 9

position-space, 4

precession angle, 12

principal axes (momentum), 51

 64

principal axis, 11

principal factors, 18

principal moments of inertia, 51

principal rotation, 11

right hand rule, 10

roll, 16

rotation operator, 9

rotational momentum, 49

scalar product, 2

scalar vector form, 26

skew-symmetric matrix associated with

space-fixed, 12

special orthogonal group, 18

spin angle, 12

Tait-Bryan angles, 16

torque, 51

total linear momentum, 49

total mass, 48

unit quaternion, 28

unit vector, 3

vector product, 2

yaw, 16

zero vector, 3

a vector, 2

 65

	Introduction
	Prerequisites
	Notation

	Vectors, directions, axes and their uses
	Vector space directions
	Vector directions in the SRM

	Orientation
	Orientation and rotation
	Representing rotations
	Axis-angle vector rotation
	Rodrigues’ rotation formula
	Principal rotations
	Euler angles
	Euler angles in the convention
	Euler angles in the convention (Tait-Bryan angles)
	Gimbal lock
	Rotation and orientation matrices
	Euler angle convention matrix factorization
	Tait-Bryan angles matrix factorization
	Quaternions
	Quaternion notations and conventions
	Quaternion algebra
	Quaternion operators on 3D Euclidean space
	Quaternions in matrix forms
	Representation summary

	Performing a rotation on an arbitrary point (formulae)
	Rotation about the origin
	Rotation about another point

	Inter-converting between representations (formulae)
	Euler angle convention to matrix
	Matrix to axis-angle
	Axis-angle to rotation matrix
	Axis-angle to quaternion
	Matrix to quaternion
	Quaternion to matrix
	Quaternion to axis-angle
	Matrix to Euler angle convention
	Euler angle convention to quaternion
	Quaternion to Euler angle convention

	Considerations for computational and storage efficiency
	Interpolation issues
	Error analysis

	Rotational kinematics
	Rotational velocity and acceleration
	Orientation , angular velocity , and angular accelerat

	Rigid body dynamics
	Use cases
	DIS Euler angles
	Rigid body integration of state

	References
	Appendices
	Appendix A – Properties of the vector cross product
	Appendix B – Derivation of Rodrigues’ rotation formula
	Appendix C – Quaternion operators on 3D Euclidean space deri
	Appendix D – Moment of inertia
	Appendix E – Matrix to axis-angle derivation
	INDEX

