
 

 

 

 

Orientation, Rotation, Velocity, and Acceleration and the 
SRM 

 
Version 1.01 

13 June 2007 

 
Paul Berner, PhD 

 

 

 

 

 



DRAFT 

DRAFT ii

Table of contents 
Orientation, Rotation, Velocity, and Acceleration and the SRM .......................................1 
1 Overview ......................................................................................................................1 

1.1 Prerequisites..........................................................................................................1 
1.2 Notation .................................................................................................................1 

2 Vectors, directions, axes and their uses .......................................................................3 
2.1 Vector space directions..........................................................................................3 
2.2 Vector directions in the SRM..................................................................................3 

3 Orientation ...................................................................................................................6 
3.1 Orientation and Rotation ........................................................................................6 
3.2 Representing Rotations .........................................................................................8 

3.2.1 Axis-angle, vector with right handed rotation................................................9 
3.2.1.1 Rodrigues’ rotation formula ......................................................................9 
3.2.2 Principal rotations ......................................................................................10 
3.2.3 Rotation Matrix...........................................................................................10 
3.2.4 Euler angles...............................................................................................15 
3.2.4.1 Other conventions ..................................................................................18 
3.2.4.2 The x–y–z convention (Tait-Bryan angles) .............................................18 
3.2.4.3 Gimbal lock ............................................................................................20 
3.2.5 Quaternions ...............................................................................................21 
3.2.5.1 Quaternion notations and conventions ...................................................21 
3.2.5.2 Quaternion algebra ................................................................................21 
3.2.5.3 Quaternion operators on 3D Euclidean space ........................................23 
3.2.5.4 Quaternions in matrix form .....................................................................24 

3.3 Performing a rotation on an arbitrary vector (formulae) ........................................25 
3.3.1 Rotation about the origin ............................................................................25 
3.3.2 Rotation about another point ......................................................................25 

3.4 Inter-converting between representations (formulae) ...........................................26 
3.4.1 Euler angles to matrix form ........................................................................26 
3.4.2 Matrix to axis-angle....................................................................................26 
3.4.3 Axis-angle to rotation matrix.......................................................................27 
3.4.4 Axis-angle to quaternion ............................................................................28 
3.4.5 Rotation matrix to quaternion .....................................................................28 
3.4.6 Quaternion to rotation matrix......................................................................28 



DRAFT 

DRAFT iii

3.4.7 Quaternion to Axis-angle............................................................................29 
3.4.8 Matrix to Euler angles ................................................................................30 
3.4.9 Euler angles to quaternion .........................................................................30 
3.4.10 various to Euler angles...........................................................................32 

3.5 Considerations for computational and storage efficiency .....................................32 
3.6 Interpolation issues..............................................................................................33 
3.7 Error analysis.......................................................................................................33 

4 Rotational Kinematics.................................................................................................33 
4.1 Rotational velocity and acceleration ........................................................................33 

4.2 Orientation (Ω), angular velocity (ω), angular acceleration (α), torque (τ).............35 
4.3 Dynamics ................................................................................................................36 
4.3.1 Rigid body dynamics......................................................................................36 
5 Use cases ..................................................................................................................41 
5.1 DIS Euler angles .....................................................................................................41 
5.2 Rigid body integration of state .................................................................................42 
6 References.................................................................................................................44 
Bibliography ..................................................................................................................44 
Appendices ...................................................................................................................44 
Appendix A – Properties of the vector cross product .....................................................44 
Appendix B – Derivation of Rodrigues’ rotation formula.................................................45 
Appendix C – Quaternion operators on 3D Euclidean space derivation.........................47 
Appendix D – Moment of inertia ....................................................................................48 
Appendix E – Matrix to axis-angle derivation.................................................................49 
INDEX...........................................................................................................................51 

 



DRAFT 

DRAFT 1

1 Overview 
Direction, orientation, and rotation are defined for 3D Euclidean space.  Various 
representations of a rotation and the conversion between representations are presented.  
The SRM (ISO/IEC 18026:2006(E)) definition of direction in either a linear or curvilinear  
spatial reference frame is presented, and the conversion of a direction representation 
from one spatial reference frame to another spatial reference frame is discussed. 

Many concepts discussed here have been in wide use from the time of Euler's work on 
the subject.  As a result, there are many similar but different treatments in the literature.  
In particular, there are similar terms with different meanings and, in some cases, the 
differences are subtle.  There are also many differences in notation conventions.  For 
this reason an attempt has been made to provide self contained derivations (assuming 
the prerequisites) of most of the formulations presented here.  By following the 
derivations there should be no mistake as to the intended meanings of the results.  To 
improve the flow of the text, parts of lengthier derivations have been relegated to 
appendices.  

1.1 Prerequisites 

This document assumes that reader is familiar with linear algebra, calculus and 
elementary physics.  The prerequisites include: 

•  Vector spaces, 

o vector dot and cross products 

•  Matrix algebra, 

•  Calculus 

•  Physics (Rigid body kinematics) 

1.2 Notation 

The coordinate representation of a three dimensional (3D) vector u  with respect to basis 

is a column vector 
1

2

3

u
u
u

 
 =  
 
 

u .  To compactly denote a coordinate in a line of text, the 

transpose is used ( )1 2 3
T, ,u u u=u . 

Inner product or dot product or scalar product of 3D vectors ( )1 2 3
T, ,u u u=u  and 

( )1 2 3
T, ,v v v=v  is defined as:  

 1 1 2 2 3 3
T u v u v u v• = = + +u v u v  (0.1) 
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The outer product of 3D vectors u and v is defined as:   
 

 
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

T
u v u v u v
u v u v u v
u v u v u v

 
 ⊗ = =  
 
 

u v uv  

(0.2) 

Note that: 
 ( ) 1 1 2 2 3 3Trace u v u v u v⊗ = + + = •u v u v  (0.3) 

The vector product or cross product of 3D vectors u and v is defined as:  
 

 ( )2 3 3 2 3 1 1 3 1 2 2 1
T, ,u v u v u v u v u v u v× = − − − = uu v S v  (0.4) 

where: 

 
3 2

3 1

2 1

0
0

0

u u
u u
u u

− + 
 = + − 
 − + 

uS  

See Appendix A for some cross product properties. 

The norm or length of a vector u is defined as:   
  

 = •u u u  (0.5) 

The 3D identity matrix is denoted as:  
 

 3 3

1 0 0
0 1 0
0 0 1

×

 
 =  
 
 

I  

(0.6) 

The 3D zero vector is noted as:  

 T(0,0,0)=0  (0.7) 

The two argument form of inverse tangent, ( )arctan2 ,y x , returns a value adjusted by the 
quadrant of the point ( ),x y . Given real numbers and ,x y  
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( )

2 2

arctan2 ,
where:  is the unique value satisying , and

if 0,
0, else

if 0,
cos  and sin .

where:

.

y x

r

r
x r y r

r x y

θ
θ θ

θ

θ θ

=

− π < ≤ π
=
=
>
= =

= +

 

2 Vectors, directions, axes and their uses 

2.1 Vector space directions 

A direction in a Euclidean vector space may be represented as a unit vector.  That is, a 
vector n of length 1.  Any non-zero u vector may be normalized to a unit vector n by 
dividing by the norm of the vector: 

 ( )T1 ,   if 0,0,0= ≠n u u
u

. 

Any positive multiple of a unit vector points in the same direction.  By requiring unit 
vectors, each direction has a unique vector representation. 

 Directions have many application specific uses.  For example, a velocity is a direction 
multiplied by a speed.  Force and momentum acting on the center of mass of a body 
may be similarly represented.  

A direction can be used to specify the axis of a rotating body.  The axis of a rotating 
body lies on a line.  By specifying the line as a direction, the right hand rule can be used 
to unambiguously identify which of the two axial rotational directions is acting on the 
body.  Torque and angular momentum acting on a body may be similarly represented. 

2.2 Vector directions in the SRM 

In the Spatial Reference Model (SRM), the underlying vector space that is associated 
with a 3D Spatial Reference Frame (SRF) is determined by the Object Reference Model 
(ORM) of the SRF.  For example, the 3D vector space of any 3D SRF based on ORM 
WGS84 corresponds to the geocentric SRF for ORM WGS84.  This associated 3D 
Euclidean space is called the object-space of the ORM.   

An SRF associates unique coordinates in a domain of coordinate-space to 
corresponding points in object-space.  In the special case of a geocentric SRF, the 
object-space and coordinate-space are indistinguishable.  In general, an SRF is either 
linear or curvilinear.  In the linear cases, the vector-space structure of coordinate-space 
carries over to object-space.  In particular, lines through points in a given direction n are 
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all parallel in both coordinate- and object-space.  This shows that a direction is 
translation invariant in a linear SRF.  A linear SRF will not preserve angular relationships 
between directions unless the associated CS is also orthonormal. In the orthonormal 
case, angles and distances are preserved. 

In general, there is no vector-space structure in the coordinate space of a curvilinear 
SRF.  The coordinate-space of an augmented map projection SRF (a map projection 
augmented with ellipsoidal height as a third dimension) appears to inherit the vector-
space structure of R3, however, the vector properties of (easting, northing, height) 
coordinates do not carry over to object-space.  This is illustrated in part by the “up 
pointing” vector n = (0, 0, 1) that points in different spatial directions (in object-space) 
depending on the map coordinate location from which n is viewed. 

 
Figure 1 – Directions in an augmented map projection SRF 

In Figure 1, distinct position points p and q on the ellipsoid surface are projected to 
augmented map coordinates (s, t, 0) and (u, v, 0). Starting at these map coordinates, the 
coordinates one unit away in direction n are (s, t, 1) and (u, v, 1) respectively. In an 
augmented map projection, these coordinates correspond to the position-space points p' 
and q'. The direction from p to p' is not the same as the direction from q to q'.  This 
shows that the "up direction" is relative to an observation or reference point.   

For each reference point, the SRM defines a uniform method for associating a unique 
orthonormal linear SRF to each reference point coordinate.  This associated linear SRF 
will be used to specify a direction as "seen" from the reference point. This SRF is called 
the local tangent frame at the reference point.  This SRF is defined by as having its 
origin at the reference point and axis directions given by the normalized tangent vectors 
to the coordinate curves passing through the reference point as illustrated in Figure 2.  
All curvilinear SRFs in the SRM are orthogonal so that the local tangent frame will be an 
orthonormal linear SRF. 

Continuing the augmented map projection example, Figure 3 shows the local tangent 
frames axes (x and z axes) at points p and q.  The local "up" directions may be specified 

(s, t, 0) coordinate-space

object-space
 p 

 p' 
q' 

q

(s, t, 1) (u, v, 1) 

(u, v, 0) 
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in either local tangent frame.  Since directions are translation invariant in linear SRFs, 
we may conceptually translate the two local tangent frames to a common origin as in 
Figure 4. 

Figure 2 – Local tangent frame axes 

Figure 3 – Local tangent frame axes at p and q 

 

Figure 4 – Direction vectors two local tangent frames 

In the SRM, a Direction data type consists of a reference point coordinate in a given 
SRF and a 3-tuple unit vector in the local tangent frame at the reference point.  Since 
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there is neither an intrinsic SRF nor an intrinsic reference point to specify a general 
direction in object-space, it is necessary to be able to inter-convert between SRF and 
reference point specifications of a given direction.  The SRM approach of associating 
reference points and local tangent frames reduces the general problem to the problem of 
inter-converting between two orthonormal linear spaces.  This problem generalizes to 
the problem of inter-converting any vector quantity between a pair of linear spaces.  The 
treatment of this problem begins with the notion of orientation. 

3 Orientation 
Consider two orthonormal bases for a Euclidean space , ,x y z  and , ,x y z .  An 
orientation is an expression of the axis directions of one basis in terms of the other.  To 
illustrate this notion, consider an aircraft at time t0 aligned with one basis: the center of 
mass of the airplane is at the vector space origin, the fuselage points in direction x, the 
starboard wing points in direction y, and (to complete a right handed system) z points 
down with respect to the aircraft (see Figure 7).  At some later time t1 subject the 
airplane to a roll, pitch, and yaw.  We subtract the vector that represents the 
displacement of the center of mass from time t0 to time t1 and the new directions for the 
fuselage, starboard wing, and relative down define the , ,x y z  directions.  The two vector 
spaces spanned by bases , ,x y z  and , ,x y z  share the same origin and are thus the 
same vector space.  The only difference is that , ,x y z has a different orientation with 
respect to , ,x y z .  Orientation is also called attitude in some contexts. 

3.1 Orientation and Rotation 

Let r and r  respectively denote the coordinate representation of a point with respect to 
each basis. 

With respect to basis , ,x y z , ( )1 2 3 1 2 3
T

where, , ,   r r r r r r= = + +r r x y z . 

With respect to basis , ,x y z , ( )1 2 3 1 2 3
T

where, , ,   r r r r r r= = + +r r x y z . 

The transformation of a coordinate ( ) ( )1 2 3 1 2 3, , , ,r r r r r r  is a linear transformation and 
can thus be realized as a matrix multiplication: 
  

 
1 1 11 12 13 1

2 2 21 22 23 2

3 3 31 32 33 3

r r a a a r
r r a a a r
r r a a a r

       
       = =       
       
       

Q  

  where:  

 
1311 12

21 22 23

31 32 33

, ,
, ,
, ,

aa a
a a a
a a a

= •= • = •
= • = • = •
= • = • = •

z xx x y x
x y y y z y
x z y z z z

 

(1.1) 
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Since the basis vectors are unit vectors, the dot products are the cosine of the angle 
between the two vectors.  For this reason the matrix is the called direction cosine matrix.  
Note that the columns of the matrix are the , ,x y z  basis vectors in , ,x y z  coordinate 
representation while the rows (or columns of the transpose matrix) are the , ,x y z  basis 
vectors in  , ,x y z  coordinate representation. 

Euler’s rotation theorem states that this linear transformation is a rotation operation.  In 
particular, the matrix has a unit eigenvector n  and three eigenvalues: 1, ,i ie eθ θ+ − .  The 
line spanned by n  is fixed under the transformation and represents the axis of rotation.  
The angle of rotation is given by θ . 

Euler’s rotation theorem thus shows that orientation and rotation are just two ways of 
viewing the same transformation.  These two ways are closely related, but are not 
equivalent.  Consider Figure 5.  On the left side, the point r is rotated by angle θ  about 
the z-axis (which points directly toward the reader) to a new position r'. 

The coordinates of these two points, ( ) ( )1 2 3 1 2 3
T T, , ,  and , ,r r r r r r′ ′ ′ ′= =r r are related by 

the following matrix. 

 ( )
1 1 1

2 2 2

3 3 3

cos sin 0
sin cos 0

0 0 1

r r r
r r r
r r r

θ θ
θ θ θ

′ −       
       ′ = =       
       ′       

zR . 

 
Figure 5 – Rotation and orientation 

 

The right side of the figure shows a second basis whose orientation with respect to the 
first basis is a rotation by angle θ  about the z-axis.  The coordinates of the single point r 
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y-axis 
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r1 

r2 

x-axis 

y-axis 

r 

r1 

r2 

r' 

r1' 

r2' 

θ 

~ r1 

r2 

θ

x-axis 
~ 

y-axis 
~ 

Rotation Orientation 
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are related by the following direction cosine matrix. 

 
1 1 1

2 2 2

3 3 3

cos sin 0
sin cos 0
0 0 1

r r r
r r r
r r r

θ θ
θ θ

       
       = = −       
       
       

zΩ . 

Notice that matrices corresponding to the left and right figures are not the same: 
( ) ( ) 3 3

T, and  θ θ ×= =z z z zR Ω Ω R I .  So while both cases, the rotation of a point, and the 
orientation of a coordinate system, involve the same axis of rotation and the same angle 
of rotation, the corresponding linear operations are, in fact, the inverses of each other.   
We shall call an operator that performs a rotation, such as the operator on the left side of 
Figure 1, a rotation operator and an operator that changes coordinate system directions, 
such as on the right side of the Figure, an orientation operator.   

Note that to transform a coordinate from the , ,x y z  coordinate system back to the 
original coordinate system, the rotation matrix may be used:  

 ( )
1 1 1

2 2 2

3 3 3

1
r r r
r r r
r r r

θ−
     
     = =     
     
     

z zΩ R  

It follows that a representation of a rotation will depend on its intended use or 
interpretation.  This document will address three primary use cases: 

Primary use case 1.  This primary use case concerns rigid body dynamics.  Rigid body 
dynamics characterize the motion of a rigid body by translation and rotation.  Of 
particular concern in this document are the characterizations of instantaneous rotational 
kinematics – rotational velocity and rotational acceleration, and rotational dynamics – 
torque and inertia.  

Primary use case 2.  This primary use case concerns the descriptions of point positions 
in one coordinate system with respect to another other coordinate system with a different 
orientation.  A sub-case concerns position descriptions between a “space-fixed” or 
inertial coordinate system and “body-fixed” coordinate system attached to a rigid body 
that is either static or moving in time. 

Primary use case 3.  This primary use case combines the first two.  Of particular concern 
is representing rigid body dynamics characterizations computed in one coordinate 
system in terms of the second coordinate system.  The coordinate systems may both be 
space-fixed, or one may be moving with respect to the other. 

3.2 Representing Rotations 

Rigid body motion exhibits six degrees of freedom - three degrees of freedom for 
translation and three degrees of freedom for rotation.  This means that, in principle, a 
rotation operation on 3D Euclidean space can be specified by three scalar numbers.  
That is indeed the case with Euler angles (see below).  However, other less compact 
specifications are used because they are more amenable to some computations such as 
performing a rotation operation on a vector, composing rotations, interpolating rotations, 
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and other operations, and/or because they can be measured or modeled directly.  Of the 
various representation methods in prevalent use, each presents various tradeoffs with 
respect to storage size, and computational complexity, speed, and error control.  Thus 
the best representation is dependent on the requirements and computational 
environment of a user application.  For this reason, different representations are in use 
and interoperability becomes an issue.  This issue is compounded by the non-standard 
meaning of terms in prevalent uses.  To support interoperability, this document will 
define terms and various methods and present algorithms for both key operations and 
inter-conversions between the representation methods.  The first rotation representation 
method is the axis-angle form. 

3.2.1 Axis-angle, vector with right handed rotation 

The axis-angle representation of a rotation, ( ),θn , consists of a unit vector ( )1=n n  

and a rotation angle θ .  This represents a rotation through angle θ  about the axis 
spanned by n .  The rotation direction is determined by the right hand rule: conceptually, 
if the right hand holds the vector n  with thumb pointing in the direction of the vector, the 
fingers point in the direction of increasing θ .   

This representation uses four scalar parameters ( )1 2 3, ,n n n=n  and θ .  The constraint 

1=n  reduces the degrees of freedom down to three degrees of freedom. 

3.2.1.1 Rodrigues’ rotation formula  

The rotation of a vector r  to a rotated vector ′r  in terms of ( ),θn  is given by 
Rodrigues’ rotation formula (see Appendix B ): 
 

 ( ) ( )( ) ( ) ( )cos 1 cos sinθ θ θ′ = + − • + ×r r r n n n r  (1.2) 

The terms may be rearranged to the alternate form: 
  

 ( )( ) ( ) ( )1 cos sinθ θ′ = + − × × + ×r r n n r n r  (1.3) 

The matrix form of this formula is: 

 ′ =r R r  
where:  

 ( ) ( )( )3 3
2sin 1 cosθ θ× = + + − n nR I S S  (1.4) 

or, alternatively (see Appendix B ): 
 

 ( ) ( )( ) ( )3 3cos 1 cos sinθ θ θ× = + − ⊗ + nR I n n S  (1.5) 
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and 

 
3 2

3 1

2 1

0
0

0

n n
n n
n n

− 
 = − 
 − 

nS   

is the skew-symmetric matrix associated with n.   
 

3.2.2 Principal rotations 

For a given 3 dimensional Euclidean space, the three vectors: 

( ) ( ) ( )T T T1,0,0 , 0,1,0 , and 0,0,1= = =x y z form an orthonormal basis for the vector 
space.  As an axis of rotation, each is called a principal axis1 of rotation.  A rotation 
about a principal axis is called a principal rotation.  Some authors refer to these rotations 
as elementary Rotations.  The vector space operators: ( ) ( ) ( ), , andα β γx y zR R R will 

denote the principal rotations through the respective angles , , andα β γ . 

3.2.3 Rotation Matrix 

A rotation operation on vector space is a linear operator, thus for a given basis it has a 
matrix representation (see 3.1).  If M is a rotation matrix, it satisfies these properties: 
 

 
( )

3 3
T T

det 1

×

=

= =

M

MM M M I
 

(1.6) 

This property implies that -1 T=M M .  Matrices satisfying these properties form a group 
with respect to matrix multiplication.  This group is known as the special orthogonal 
group of degree 3, SO(3).  In particular, the product of any two rotation matrices is itself 
a rotation matrix.  (Note: Matrix multiplication is generally not commutative). 

Performing a rotation operation may be realized by simple matrix multiplication: 
′ =r Mr .  The inverse operation is T ′=r M r .  While this is computationally convenient, 

the matrix representation does not lend itself well to intuitive visualization of the 
corresponding rotation.  For this and other reasons, it is important to able to factor a 
given rotation matrix into principal rotations.  The matrix forms of the principal rotations 
are: 
  

                                                

1 This term should not be confused with the moment of inertia principal axes. 
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( ) ( )

( ) ( )

( ) ( )

T

T

T

and

1 0 0
0 cos sin ,
0 sin cos

cos 0 sin
0 1 0 ,

sin 0 cos

cos sin 0
sin cos 0 .

0 0 1

α α α α
α α

β β
β β

β β

γ γ
γ γ γ γ

 
 = = − 
 
 
 
 = =  
 − 

− 
 = =  
 
 

x x

y

z z

y

R Ω

R Ω

R Ω

 

(1.7) 

NOTE: We are using R  to denote the rotation operation that moves a point by rotation, 
and Ω  to denote the orientation operation that transforms a coordinate in a coordinate 
system into a coordinate in a coordinate system that is rotated with respect to the first 
coordinate system. 

To factor a rotation matrix 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
 
 

R  in to a sequence of principal rotations of 

the form2 ( ) ( ) ( )γ β αz y xR R R , we multiply the corresponding matrices to obtain: 
 

 

( ) ( ) ( )
cos cos cos sin sin sin cos cos sin cos sin sin
sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

γ β α

γ β γ β α γ β γ β α γ α
γ β γ β α γ α γ β α γ α

β β α β α

=

− + 
 + − 
 − 

z y xR R R

 

  (1.8) 

Matching the elements of this matrix to those of R  we find that 31 sina β= − , 

32 33 tana a α= , and 21 11 tana a γ= .  These equations lead to the solutions in Table 1 
based on the value of 31a . 

Table 1–Principal rotation factors for z-y-x rotation 

Case Principal rotation factors for ( ) ( ) ( )γ β αz y xR R R  

                                                

2 Note that the order of applying each of principal rotations is right-to-left so that 
the ( )αxR rotation is performed first. 
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Case Principal rotation factors for ( ) ( ) ( )γ β αz y xR R R  

( )31arcsin
2 2

aβ
β

= −

− π < < π
 ( )32 33atan2 ,a aα =  ( )21 11atan2 ,a aγ =  

31 1a ≠ ±  

( )31arcsin
2 2

aβ
β

= −

π < < 3π
 ( )32 33atan2 ,a aα = − −  ( )21 11atan2 ,a aγ = − −  

31 1a = −  β = π 2 ( )12 13atan2 ,a aα γ= +  any value of γ  

31 1a = +  β = −π 2 ( )12 13atan2 ,a aα γ= −  any value of γ  

In the case 31 1a ≠ ±  there are two valid solution sets depending on the quadrants 
selected for arcsine values.  In the case 31 1a = − , using the trigonometric identities for 
the difference of angles and substituting sin 1β =  andcos 0β = , the matrix reduces to : 

 ( ) ( )
( ) ( )
( ) ( )

0 sin cos
0 cos sin
1 0 0

α γ α γ
γ α α γ α γ

 − −
π    = − − −   2   − 

z y xR R R . 

This shows that only the difference of the other two angles is determined as 
( )12 13atan2 ,a aα γ− = .  Therefore all values are valid for γ  if we set 

( )12 13atan2 ,a aα γ= + .  The case 31 1a = +  is similar to the previous case with only the 

sum of angles is determined as ( )12 13atan2 ,a aα γ+ = . 

The non-determinacy in the last two cases is related to the phenomenon of gimbal lock 
(see below). 

To factor an orientation matrix 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
 
 

Ω  into a sequence of principal 

rotations of the form ( ) ( ) ( )α β γx y zΩ Ω Ω , we multiply the corresponding matrices to 
obtain: 
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( ) ( ) ( )
cos cos sin cos sin

cos sin sin sin cos sin sin sin cos cos cos sin
cos sin cos sin sin sin sin cos cos sin cos cos

α β γ

γ β γ β β
γ β α γ α γ β α γ α β α
γ β α γ α γ β α γ α β α

=

− 
 − + 
 + − 

x y zΩ Ω Ω

 

  (1.9) 

Note that this matrix is just the transpose of ( ) ( ) ( )γ β αz y xR R R  so that solutions use 
transposed elements as shown in Table 2. 
 

Table 2 – Principal orientation factors for x-y-z orientation 

Case Principal rotation factors for ( ) ( ) ( )α β γx y zΩ Ω Ω  

( )13arcsin
2 2

aβ
β

= −

− π < < π
 ( )23 33atan2 ,a aα =  ( )12 11atan2 ,a aγ =  

 

13 1a ≠ ±  ( )13arcsin
2 2

aβ
β

= −

π < < 3π
 ( )23 33atan2 ,a aα = − −  ( )12 11atan2 ,a aγ = − −  

13 1a = −  β = π 2 ( )21 31atan2 ,a aα γ= +  any value of γ  

13 1a = +  β = −π 2 ( )21 31atan2 ,a aα γ= −  any value of γ  

As can be seen in Table 1 and Table 2, the three angle sequence corresponding to a 
given rotation or orientation operator is not unique.  Two such sequences, ( )1 1 1, ,α β γ  

and ( )2 2 2, ,α β γ  specify the same operator if they satisfy one the criteria of the next 
Table. 

Table 3 – Equivalence of x-y-z principal rotation sequences 

Case 
Criteria for the equivalence of x-y-z principal rotation sequences: 

 ( )1 1 1, ,α β γ  and ( )2 2 2, ,α β γ  

1 2β β=  1 2 1 2 1 2,α α γ γ β βπ = = ≠ ± ≠ 2 
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Case 
Criteria for the equivalence of x-y-z principal rotation sequences: 

 ( )1 1 1, ,α β γ  and ( )2 2 2, ,α β γ  

1 2β β+ = π 2 1 2 1 1 2,α α γ γ β βπ − = π − = π ≠ ≠ 2 
 

1 2β β π= =
2

 1 1 2 2α γ α γ− = −  

1 2β β π= = −
2

 1 1 2 2α γ α γ+ = +  

 
Factorizations using other axis orderings may be obtained in similar fashion.  There are 
twelve non-trivial orderings.  The case ( ) ( ) ( )γ β αz x zΩ Ω Ω  is used below.  The 
orientation matrix is then in the form: 
 

 

( ) ( ) ( )
cos cos cos sin sin cos cos sin sin cos sin sin
cos sin cos sin cos cos cos cos sin sin sin cos

sin sin sin cos cos

γ β α
α γ β α γ β α γ α γ β γ
α γ β α γ β α γ α γ β γ

β α β α β

=

− + 
 − − − 
 − 

z x zΩ Ω Ω

 

  (1.10) 

The Principal rotation factors for this ordering are shown in Table 4. 
 

Table 4–Principal rotation factors for z-x-z orientation 

Case Principal rotation factors for ( ) ( ) ( )γ β αz x zΩ Ω Ω  

( )33arccos
0

aβ
β π

=

< <
 ( )31 32atan2 ,a aα = −  ( )13 23atan2 ,a aγ =  

 

33 1a ≠ ±  ( )33arccos
2

aβ
π β π

=

< <
 ( )31 32atan2 ,a aα = −  ( )13 23atan2 ,a aγ = − −  
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33 1a = −  β π=  ( )12 11atan2 ,a aα γ= +  any value of γ  

33 1a = +  0β =  ( )12 11atan2 ,a aα γ= −  any value of γ  

Two sequences, ( )1 1 1, ,α β γ  and ( )2 2 2, ,α β γ  of z-x-z principal rotations specify the same 
operator if they satisfy one the criteria of the next Table. 

 
Table 5 – Equivalence of z-y-z principal rotation sequences 

Case 
Criteria for the equivalence of z-y-z principal rotation sequences: 

 ( )1 1 1, ,α β γ  and ( )2 2 2, ,α β γ  

1 2β β=  [ ]1 2 1 2 1 2, , 0 or α α γ γ β β= = ≠ π  

1 2 2β β+ = π [ ]2 1 2 1 1 2, , 0 or α α γ γ β β− = π − = π ≠ π 

1 2β β= = π 1 1 2 2α γ α γ− = −  

1 2 0β β= =  1 1 2 2α γ α γ+ = +  

 

3.2.4 Euler angles 

Euler angles are a specification of a rotation obtained by applying three consecutive 
principal rotations.  There are twelve distinct ways to select a sequence pf three principal 
axes and apply the principal rotations (24 if left-handed axes are considered).  Each 
such ordered selection is an Euler angle convention.  There is little agreement among 
authors in naming these conventions. 

The three principal rotations may be either rotations about the original axes, or about the 
successively rotated axes.  Given a rotation, let , ,x y z  be the principal axes after the 
rotation is applied to the , ,x y z  axes.  To distinguish between these two coordinate 
bases, coordinates with respect to the original basis , ,x y z  will be called space-fixed or 
static coordinates and those with respect to the moving , ,x y z  axes will be called body-
fixed or rotating coordinates.  It is useful to think of the , ,x y z  as attached to a rigid body 
that will be rotated.  We shall assume that the xy-plane and xy -plane intersect in a line.  
This line is called the line of nodes.   
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The Euler angles in the - -z x z  convention are the three angles defined as follows: 

α is the angle between the x-axis and the line of nodes, 
β is the angle between z-axis and the z -axis, and 
γ  is the angle between the x -axis and the line of nodes. 

In some contexts α  is called the spin angle, β is called the nutation angle, and γ is 
called the precession angle.  Many authors use the symbols  φ, θ, and ψ  for these 
angles, but disagree on the identifying ordering. 

These three angles specify a rotation as consecutive principal rotations using the z–axis, 
the x–axis and z–axis again.  There are two equivalent specifications, space-fixed (or 
static) and body-fixed or rotating. 

In the space-fixed (or static) specification, all the principal rotations are about the fixed-
space principal axes z and x.  The first principal rotation is about the z-axis through 
angleα , followed by the x-axis through angle β , followed by the z-axis again through 
angleγ .  The combined rotation is ( ) ( ) ( )γ β αz x zR R R . 

The assumption that the xy-plane and xy -plane intersect in a line is met when 0β ≠  
and β ≠ π.  If 0β =  or β = π, the consecutive rotations collapse down to a single 
principal rotation (compare with Table 4):  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 : 0
:

β γ α γ α γ α
β γ α γ α γ α

= = = +
= π π = − = −

z x z z z z

z x z z z z

R R R R R R
R R R R R R

. 
(1.11) 

In the body-fixed (or rotating) specification, all the principal rotations are about the body-
space principal axes z and x .  Before any rotation is applied, the space-fixed and body-
fixed bases coincide. The first principal rotation is about the z -axis through angleγ .  
This rotates axes x and y  to the intermediate orientations ′x and ′y (in this 
intermediate position, the ′x -axis lies on the line of nodes). The second rotation is about 
the intermediate x'-axis through angle β .  This second rotation moves the  ′y  and z  
axes to intermediate orientations ′′z  and ′′y .  The third rotation is about ′′z -axis 
throughα which moves axes x' and  ′′y  to their final orientations ′′′x  and ′′′y   The 
combined rotation is ( ) ( ) ( )α β γ′′ ′ zz xR R R .  The final body-fixed axis orientations are 

, ,′′′ ′′′ ′′= = =x x y y z z .  The sequence of body-fixed rotations is illustrated in Figure 6.   
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Figure 6 — Euler z-x-z rotation sequence 

Observe that order of the three rotation angles is reversed between the space- and 
body-fixed cases: 
 

 
( ) ( ) ( )
( ) ( ) ( )

space-fixed
body-fixed

γ β α
α β γ′′ ′

z x z

zz x

R R R
R R R

 
(1.12) 

To show that both expressions produce the same rotation, note that when x' is at its 
intermediate position on the line of nodes, the second rotation ( )β′xR   is equivalent to 

first rotating the line of nodes to the x-axis using principal rotation ( )γ−zR , rotating 

about the x-axis ( which is the line of nodes at this point) with ( )βxR  and finally rotating 

x' 

z 

x 

y 

y' x' 

x x' 

y 

z 

z 

z" 

y' 

z" 

y 

y' x 

y''' 

y" 

y" 

x''' 

line of nodes 

line of nodes 

line of nodes 

γ 

β 

α 

γ 

γ 

β 

β 

α 

α 

z–axis rotate γ 

z–axis rotate α 

x–axis rotate β 
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the line of nodes back to its original position with ( )γzR .  In effect, 

( ) ( ) ( ) ( )β γ β γ′ = −z x zxR R R R .  Similarly, ( ) ( ) ( ) ( )α β α β′′ ′ ′= −zz x xR R R R .  Noting 
that two rotations about the same axis commute and substituting these expressions in 
the body-fixed formulation gives: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

α β γ β α β β γ

β α γ

γ β γ α γ

γ β α γ γ
γ β α

′′ ′ ′ ′ ′

′

 = − 
 =  
 = − 

= −

=

z z zz x x x x

z zx

z x z z z

z x z z z

z x z

R R R R R R R R

R R R

R R R R R

R R R R R

R R R

 

This result: 

 ( ) ( ) ( ) ( ) ( ) ( )α β γ γ β α′′ ′ =z z x zz xR R R R R R  (1-13) 

shows that the space-fixed and body-fixed formulations produce the same rotation.  Both 
formulations are important.  The matrix formulations of the principal rotations (Equation 
(1.7)) are expressed with respect to the static frame.  However, a gyroscope attached to 
the rotated body would read out the angles with respect to the rotating frame. 

The orientation of the , ,x y z  axes with respect to the , ,x y z  is inverse of the rotation: 
 

 ( ) ( ) ( )α β γz x zΩ Ω Ω  (1.14) 

 

3.2.4.1 Other conventions 

There are numerous conventions for Euler angles in use and many are named 
inconsistently. (Note that some authors use a left-handed coordinate system.  All 
coordinate systems in this document are right-handed).  The convention defined above 
using axes z–x–z  (also known as the 3-1-3 convention) is often called the x-convention.  
Replacing x with y gives the so called y-convention (z–y–z or 3-2-3).  Quantum physics 
treatments prefer the y-convention, but x–y–x  (or 1-2-1) is also called the y-convention 
by some authors.  The convention using x–y–z (or 1-2-3) is defined below.   

 

3.2.4.2 The x–y–z convention (Tait-Bryan angles) 

This convention is used to specify orientation in DIS packets as specified in the IEEE 
1278.1-1995 standard.  Euler angles in this convention are variously called Tait-Bryan 
angles, Cardano angles, or nautical angles.  In this convention the line of nodes is the 
intersection of the xy-plane and yz -plane.  The Euler angles in the x–y–z convention are 
defined as follows: 
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ψ is the angle between the y-axis and the line of nodes, 
θ is the angle between z-axis and the yz -plane, and 
φ  is the angle between the y -axis and the line of nodes. 

The rotation is specified as principal rotations about the body-space principal axes.  The 
first rotation is by angle ψ  about the z -axis.  The second is by angle θ  about the y -
axis.  The third is by angleφ  about the x -axis.  The combined rotation is  

 ( ) ( ) ( )φ θ ψzx yR R R . (1.15) 

The equivalent space-fixed (or static) specification is: 

 ( ) ( ) ( )ψ θ φz y xR R R . (1.16) 

The various names given to these angle symbols include: 

φ  roll or bank or tilt, 
θ  pitch or elevation, and 
ψ  yaw or heading or azimuth. 

Figure 7 - Tait-Bryan angles 

When the fixed body is an aircraft, the common practice is to choose the center of mass 
as the coordinate system origin with the x-axis pointing forward, the y-axis pointing 

x-axis 

y-axis z-axis 

ψ  roll 

φ  Yaw 

θ  pitch 
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starboard, and the z-axis pointing down (to complete a right handed system3).  This is 
also the "entity coordinate system" defined in the IEEE 1278.1-1995 standard.  In these 
cases the Euler angles are called Tait-Bryan angles and the names roll, pitch, and yaw 
are specifically used. 

 

 

In the IEEE 1278.1-1995 standard, Euler Angles are defined as the successive rotations 
needed to transform from the world (space-fixed) coordinate system to the entity (body-
fixed) coordinate system.  In that standard, the world coordinate system is the WGS84 
Geocentric SRF and the entity coordinate system is as shown in Figure 7, with 
coordinate system origin at the center of the entity bounding volume.   

The specified rotation sequence is the Tait-Bryan rotation with respect to the body-fixed 
(rotating) frame, shown in Equation (1.15), or the space-fixed (static) equivalent shown 
in Equation (1.16).  To express a world frame coordinate in the entity coordinate frame, 
the transpose of that rotation is required.  The transpose is 

 
( ) ( ) ( )
( ) ( ) ( )

space-fixed
body-fixed

ϕ θ ψ
ψ θ φ

x y z

z y x

Ω Ω Ω
Ω Ω Ω

 
(1.17) 

The corresponding matrix operator is denoted in the IEEE 1278.1-1995 standard as 
[ ]w b→R . 

3.2.4.3 Gimbal lock 

The term gimbal lock refers to a gyroscope mounted in tree nested gimbals to provide 
three degree of rotation freedom.  Each mounting scheme corresponds to an Euler angle 
sequence.  In any such mounting scheme, there exists critical angles for the middle 
gimbal that reduce the rotational degrees of freedom to two.  The loss of a degree of 
freedom is termed "gimbal lock". 

The case of Euler angles in the - -z x z  convention is illustrated by a spinning table top. 
The top spins on its spin axis and precesses about the precession axis.  The angle 
between the spin and precession axes in the nutation angle.  When the spin axis is 
perfectly vertical (either upright or upside down), the nutation angle is 0 or π and the spin 
and precession axes become indistinguishable fro each other.  This is represented 
mathematically in Table 4 and Table 5.  In those tables, the cases of β π=  or 0β =  
are singular in that only the sum (or difference) of the other angles can be determined. 

The case of Euler angles in the - -x y z  convention (Tait-Bryan) is illustrated by an aircraft 
as in Figure 7.  When the aircraft either climbs vertically, or dives vertically, the roll axis 

                                                

3 In this axis assignment, positive pitch tilts the aircraft up (angle of attack), and if the x-axis aligns 
with local North, yaw corresponds to heading and azimuth. 
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cannot be distinguished from the yaw axis.  This occurs at critical roll angles of 2± π .  
This is represented mathematically in Table 1 and Table 2.  In those tables, the cases of 
β = ± π 2are singular in that only the sum (or difference) of the other angles can be 
determined. 

3.2.5 Quaternions 

In this section the definition of quaternions is presented.  It is then shown that each 
quaternion induces a rotation operator.  The importance of the algebraic structure of the 
quaternions is that rotations behave well under these operations. 

3.2.5.1 Quaternion notations and conventions  

The quaternions are a 4-dimensional vector space together with a vector multiplication 
operation that forms a non-commutative associative algebra.  In analogy to complex 
numbers that are written as  2, 1a b+ = −i i , quaternion axes , , ,i j k  are defined with the 
following relationships: 2 2 2 1= = = = −i j k ijk .  A quaternion q  is denoted as 

0 1 2 3e e e e= + + +q i j k .  The first term 0e is called the “real” (or “scalar”) part of q  and 

1 2 3e e e+ +i j k  is called the “imaginary” (or “vector”) part of q . 

There are several other conventions used to denote a quaternion.  To distinguish 
conventions in this document, the 0 1 2 3e e e e+ + +i j k  form will be called the Hamilton 
form.  The scalar vector form uses an ordered pair of a scalar and 3-tuple vector 

( )0,e=q e .  The scalar is the real part of q  and the vector corresponds to the imaginary 

part of q , ( )1 2 3
T, ,e e e=e .  As can be seen below, this form allows for some compact 

notation.  (NOTE: In the literature, the order is sometimes reversed: ( )0,e=q e .) 

Another convention the 4-tuple form which is just the 4-tuple of numbers 
( )0 1 2 3, , ,e e e e=q .  Formulations below will be given in each of these three notational 

conventions.  (NOTE: In the literature, the real part is sometimes placed last: 
( )1 2 3 4 4 0, , ,   where .e e e e e e= =q ) 

3.2.5.2 Quaternion algebra 

Let 0 1 2 3p d d d d= + + +i j k  and q  be two quaternions and let t  be a scalar.  
Quaternion addition and scalar multiplication (in each notational convention) is defined 
as usual for 4D vector space: 

 

( ) ( ) ( ) ( )
( )
( )

0 0 1 1 2 2 3 3

0 0

0 0 1 1 2 2 3 3

[Hamiltion form]
, [scalar vector form]

[4-tuple form], , ,

t d te d te d te d te

d te t

d te d te d te d te

+ = + + + + + + +

= + +

= + + + +

p q i j k

d e  
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Assuming associative multiplication, the quaternion axes relationships gives the 
quaternion multiplication rule (in each notational convention): 
 

 

( )
( )
( )
( )
( ) ( )( )
( )

( )
( )

( )

0 0 1 1 2 2 3 3

1 0 0 1 2 3 3 2

2 0 0 2 3 1 1 3

3 0 0 3 1 2 2 1

0 0 0 0

0 0 1 1 2 2 3 3

1 0 0 1 2 3 3 2

2 0 0 2 3 1 1 3

3 0 0 3 1 2 2 1

,

,

,

,

d e d e d e d e

d e d e d e d e

d e d e d e d e

d e d e d e d e

d e e d

d e d e d e d e

d e d e d e d e

d e d e d e d e

d e d e d e d e

= − − −

+ + + −

+ + + −

+ + + −

= − • + + ×

− − −

+ + −
=

+ + −

+ + −

 
 
 
 
 
 
 

pq

i

j

k

d e d e d e

[Hamiltion form]

[Scalar vector form]

[4-tuple form]

 

  (1.18) 

Quaternion multiplication is not commutative (note the cross product term in the second 
notation form).  However, the quaternion addition and multiplication operations form an 
associative algebra. 

The conjugate of a quaternion q  is defined analogously with complex numbers:  
 

 ( )
( )

0 1 2 3

0

0 1 2 3

[Hamiltion form]
[scalar vector form]
[4-tuple form]

,

, , ,

e e e e
e

e e e e

∗ = − − −

= −

= − − −

q i j k
e  

(1.19) 

 

The product of a quaternion with its conjugate is real and is called the norm of q : 

 ( )
( )

2 2 2 2
0 1 2 3

2 2 2 2
0 1 2 3

2 2 2 2
0 1 2 3

[Hamiltion form]
[scalar vector form]
[4-tuple form]

,

, 0, 0, 0

e e e e

e e e e

e e e e

∗ ∗= = + + +

= + + +

= + + +

qq q q

0  

The modulus of a quaternion is defined as the square root of the norm: 

 2 2 2 2
0 1 2 3e e e e∗= = + + +q qq .   
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A quaternion q  is a unit quaternion if 1=q .  In that case 1∗ ∗= =qq q q  which implies 

that, for a unit quaternion, its conjugate is its multiplicative inverse 1− ∗=q q .  More 

generally, the inverse of a quaternion p  is  1
2

∗ ∗
−

∗= =p pp
pp p

. 

If ( )0,e=q e  is a unit quaternion, then q  may be expressed in the form: 
  

 ( ) ( )( )cos , sinα α=q n   

 where:  

 ( )0

2 2 2
1 2 3

is a unit vector in 3D space,

, and

1

arctan2 , e

e e e

α

=

=

= + +

n e
e

e

e

 

(1.20)  

Note: Arctan2 is defined in [SRM] sub-clause A.8.1. 

3.2.5.3 Quaternion operators on 3D Euclidean space 

Each quaternion q  corresponds to a linear operator on 3D Euclidean space as follows: 

Let ( )1 2 3, ,r r r=r  be a point in 3D Euclidean space, then the corresponding quaternion is 

formed by using 0 for the real part and r  for the complex part ( )0,r .  A unit quaternion 

q  operates on ( )0,r  by left multiplying with q  and right multiplying with its conjugate 
∗q .  It is shown in Appendix C that the real part of the product ( ) ( )00, ,q r∗ ′ ′=q r r , is 0.  

Thus, ( ) ( )0, 0,q∗ ′=q r r  and the quaternion q  associates ′r  with r .  Symbolically the 

operation on r  is: ( ){ }0,imaginary part ∗′ =r r q r q . 

In terms of ( )0,e=q e  it is also shown in Appendix C that  

 ( ) ( )2
0 02 2e e′ = − • + • + ×r e e r e r e e r . 

Since q  is a unit quaternion, there exists (equation (1.20)) an angle α  satisfying  

( ) ( )( )cos , sinα α=q n , then by substitution: 
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( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )

2 2 2

2 2 2

if then

and

so that

cos sin 2sin 2cos sin

2 ,
cos cos sin 1 2sin ,

sin 2cos sin ,

cos 1 cos sin

α α α α α

θ α
θ α α α
θ α α

θ θ θ

′ = − • + • + ×

=
= − = −

=

′ = + − • + ×

r n n r n r n n r

r r n r n n r

 

This last expression is Rodrigues’ rotation formula (equation (1.3)) for a counter-
clockwise rotation about axis n  through angle θ , thus quaternion operation on r is a 
rotation operation.  Unit quaternions in scalar vector form are often written as 

cos , sin
2 2
θ θ    =     
    

q n  to indicate the corresponding rotation angle θ  (see equation 

(1.20)).   

Let p  be any non-zero quaternion and let 2= pq
p

 be its corresponding unit quaternion, 

then ( ) ( ) ( ) ( )1
20, 0, 0, 0,

∗ ∗
− ∗= = =p p pp r p p r r q r q

p pp
.   

This shows that any non-zero quaternion performs a rotation with the ( ) 10, −p r p  
operation and that this rotation is identical to the rotation performed by the 
corresponding unit quaternion ( ) ( )10, 0,− ∗=q r q q r q .  For this reason, some authors 

use ( ) 10, −p r p  operations for any non-zero quaternion while other restrict the set to unit 

quaternions only and use the ( )0, ∗q r q  operator.  A unit quaternion in 4-tuple form is 
also called the Euler parameters of a rotation.  

The quaternion representation of rotation facilitates the computation the composition of 
two rotations.  If 1q and 2q  are two unit quaternions, the composite rotation on r  is 
obtained by first rotating with the rotation operation induced by 1q  and then rotating the 
result with the rotation operation induced by 2q  is the same as the single rotation 
induced by the quaternion product 2 1q q  since 

 ( ){ } ( ) { } ( ){ }2 1 1 2 2 1 1 2 2 1 2 10, 0, 0, ∗∗ ∗ ∗ ∗= =q q r q q q q r q q q q r q q . 

3.2.5.4 Quaternions in matrix form  

A quaternion ( )0 1 2 3, , ,e e e e=q  can also be represented as a 2x2 complex matrix or a 4x4 
real matrix.   

The complex from is 0 1 2 3

2 3 0 1

e ie e ie
e ie e ie

+ + 
 − + − 

.   
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The real form is 

0 1 3 2

1 0 2 3

3 2 0 1

2 3 1 0

e e e e
e e e e
e e e e

e e e e

− − 
 − − 
 − −
  
 

.   

The advantage of these forms are that quaternion addition and multiplication is just 
matrix addition and matrix multiplication.  The conjugate ∗q  is just the matrix conjugate 
transpose in the complex case and the matrix transpose in the real case. 

3.3 Performing a rotation on an arbitrary vector (formulae) 

3.3.1 Rotation about the origin 

Rotating a point r:  Denote the rotated point by r'. 

Using the rotation matrix form: 
 
The rotated point is obtained by matrix multiplication. 

 ′ =r R r  

For Euler angles in the - -z x z  convention, use transpose of the matrix in Equation (1.10). 

For Tait-Bryan angles, use the matrix in Equation (1.8).  

Axis-angle form: 
 
A counter-clockwise rotation about axis n (a unit vector ) through angleθ  is given by 
Rodrigues’ rotation formula: 

  ( ) ( )( ) ( ) ( )cos 1 cos sinθ θ θ′ = + − • + ×r r n r n n r .  

Using the quaternion form: 

 ( ) ( )2 2 2 2
0 1 2 3 02 2e e e e e′ = − − − + • + ×r r e r e r e  

 

3.3.2 Rotation about another point 

To perform a rotation of point q about the point p to obtain a rotated point q', let 

 r = q – p. 

Rotate r to r', and then let 

 q' = r' + p. 
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3.4 Inter-converting between representations (formulae) 

3.4.1 Euler angles to matrix form 

The orientation matrix Ω  is the matrix product of the corresponding three principal 
orientation matrices defined in 3.2.2, equation (1.7). 

For Euler angles in the - -z x z  convention: 

 ( ) ( ) ( )γ β α= z x zΩ Ω Ω Ω . 

The resulting orientation matrix is given in Equation (1.10). 

The rotation matrix R is the matrix product of the corresponding three principal rotation 
matrices defined in 3.2.2, equation (1.7). 

 ( ) ( ) ( )α β γ= z x zR R R R . 

For Euler angles in the x–y–z convention (Tait-Bryan and IEEE 1278.1-1995 Convention) 
the orientation matrix is: 

 ( ) ( ) ( )ϕ θ ψ= x y zΩ Ω Ω Ω . 

Substituting angle symbols, , ,α ϕ β θ γ ψ↔ ↔ ↔ in Equation (1.9) gives the resulting 
orientation matrix.  

The rotation matrix is: 

 ( ) ( ) ( )γ β αz y xR R R .  

Substituting angle symbols, , ,α ϕ β θ γ ψ↔ ↔ ↔ in Equation (1.8) gives the resulting 
rotation matrix.  

3.4.2 Matrix to axis-angle 

Given a rotation matrix 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
 
 

R , find unit vector n and angle θ  so that 

( ),θn  is the axis-angle representation of the rotation.   

The formulations here are derived in Appendix E where it is shown that: 

 
( ) ( )11 22 331 Trace 1

arccos arccos , 0 .
2 2

r r r
θ θ π

      − − + +
= = ≤ ≤               

R
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There are three cases for the computation of n  that depend on the value of θ . 

Case 0θ = :  There is no rotation so n  is in-determinant. 

Case 0 θ< < π:  Let 
1=n v
v

, where: 

 
32 23

13 31

21 12

r r
r r
r r

− 
 = − 
 − 

v . 

Case: θ = π:  First find the maximum diagonal element 11 22 33or, ,a a a  of R .  Then: 

Sub-case 11a  is the maximum:  Let ( ) 1312
1 11 2 3

1 1

1 2, ,
2 2

aav a v v
v v

= + = = . 

Sub-case 22a  is the maximum:  Let ( ) 3212
2 22 1 3

2 2

1 2, ,
2 2

aav a v v
v v

= + = = . 

Sub-case 33a  is the maximum:  Let ( ) 13 23
3 33 1 2

3 3

1 2, ,
2 2
a av a v v
v v

= + = =  

Finally let 
1=n v
v

, where ( )1 2 3
T, ,v v v=v . 

Given an orientation matrix Ω , let T=R Ω and compute ( ),θn  as above.  

3.4.3 Axis-angle to rotation matrix 

To convert rotation axis n and angle θ  form ( ),θn  to the corresponding rotation matrix 
R, use Rodrigues’ rotation formula (equation (1.4) or (1.5)):  
 

 
( ) ( )( )

( ) ( )( ) ( )
3 3

3 3

2sin 1 cos

cos 1 cos sin

θ θ

θ θ θ

×

×

 = + + − 
 = + − ⊗ + 

n n

n

R I S S

I n n S
 [revised]

(1.21) 

where:  

 
3 2

3 1

2 1

0
0

0

n n
n n
n n

− 
 = − 
 − 

nS  

is the skew-symmetric matrix associated with n.  

The form of R  expanded to matrix elements is: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2
1 1 2 3 1 3 2

2
2 1 3 2 2 3 1

2
3 1 2 3 2 1 3

1 cos cos 1 cos sin 1 cos sin
1 cos sin 1 cos cos 1 cos sin
1 cos sin 1 cos sin 1 cos cos

n n n n n n n
n n n n n n n
n n n n n n n

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

 − + − − − +
 − + − + − − 
 − − − + − + 

 

(1.22) 

 

3.4.4 Axis-angle to quaternion 

Starting with axis-angle form ( ),θn , where n is a unit vector and angle θ  is a counter-
clockwise rotation about n.  Let: 
  

 

0

1 1

2 2

3 3

cos
2

sin sin
2 2

e

e n
e n
e n

θ

θ θ

 =  
 

   
      = = =            

   

e n
 

(1.23) 

Then the corresponding quaternion is:  
 

 ( )
( )

0 1 2 3

0

0 1 2 3

[Hamiltion form]
[scalar vector form]
[4-tuple form]

,

, , ,

e e e e
e

e e e e

= + + +

=

=

q i j k
e  

(1.24) 

 

3.4.5 Rotation matrix to quaternion  

Convert the matrix to axis-angle form as in 3.4.2.  Then convert the axis-angle form to 
quaternion form as in 3.4.4.  

3.4.6 Quaternion to rotation matrix 

Given: 

 ( )
( )

0 1 2 3

0

0 1 2 3

[Hamiltion form]
[scalar vector form]
[4-tuple form]

,

, , ,

e e e e
e

e e e e

= + + +

=

=

q i j k
e  

the rotation matrix is then: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2 2 2

2 1 2 2

2 2 1 2

e e e e e e e e e e

e e e e e e e e e e

e e e e e e e e e e

 − + − +
 
 = + − + −
 
 − + − + 

R  

(1.25) 

Since 2 2 2 2
0 1 2 3 1e e e e+ + + = , the diagonal terms in the matrix can be re-written in the 

following equivalent form: 

 
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2
2 2
2 2

e e e e e e e e e e e e
e e e e e e e e e e e e
e e e e e e e e e e e e

 + − − − +
 = + − + − − 
 − + − − + 

R  

(1.26) 

It is also shown in Appendix C that  

 ( ) ( )2
0 02 2e e′ = − • + • + ×r e e r e r e e r . 

This equation in matrix form is: 

 ( )2 2 2 2
0 1 2 3 3 3 02 2e e e e e×

 ′ = − − − + ⊗ + er I e e S r  

where 
3 2

3 1

2 1

0
0

0

e e
e e
e e

− 
 = − 
 − 

eS  

The expansion of this expression gives equation (1.26). 

 

3.4.7 Quaternion to Axis-angle  

Given a unit quaternion ( )0,e=q e , find the corresponding axis angle form ( ),θn . 

Section 3.4.4 shows that the quaternion corresponding to axis angle ( ),θn  is 

 cos , sin
2 2
θ θ    =     
    

q n .   

Reversing this formulation yields: 
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( ) ( )( )

( )
0

2
0 02

0

, , 2 * arctan2 ,

, 2 * arctan2 1 ,
1

e

e e
e

θ =

 
 = −
 − 

n e e e

e  

3.4.8 Matrix to Euler angles 

Given a rotation or orientation matrix 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
 
 

M ,  determine the 

corresponding Euler angles. 

To find the Euler angles in the x–y–z rotation convention ( ) ( ) ( )γ β α= z y xM R R R , 
use Table 1.  

To find the Euler angles in the x–y–z orientation convention ( ) ( ) ( )γ β α= z y xM Ω Ω Ω , 
use Table 2.  In case of Tait-Bryan angles, the following symbol correspondence is 
made: 

 
α φ
β θ
γ ψ

↔
↔
↔

 

To find the Euler angles in the z–x–z orientation convention ( ) ( ) ( )γ β α= z x zM Ω Ω Ω  
use Table 4. 

3.4.9 Euler angles to quaternion  

The principal rotations (section 3.2.2) correspond to the following quaternions: 

 

( )

( )

( )

cos , sin
2 2

cos , sin
2 2

cos , sin
2 2

γ γγ

β ββ

α αα

    ↔     
    

    ↔     
    

    ↔     
    

z

y

x

R z

R y

R x

 

For each Euler convention, multiply the corresponding quaternions.  Terms in the 
resulting product may be simplified using the orthonormal property of the vector set x, y 
and z. 
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For Euler angles in the - -z x z  convention, the rotation ( ) ( ) ( )γ β αz x zR R R  
corresponds to: 

 cos , sin cos , sin cos , sin
2 2 2 2 2 2
γ γ β β α α                =                 
                

q z x z  

When multiplied out with the quaternion multiplication rule (Equation (1.18)), the 
expression reduces to: 

 ( )( )0 1 2 3
T, , ,e e e e=q  

where: 

 

0

1

2

cos cos cos sin cos sin
2 2 2 2 2 2

cos sin cos sin sin sin
2 2 2 2 2 2

sin sin cos cos sin s
2 2 2 2 2

e

e

e

γ β α γ β α

γ β α γ β α

γ β α γ β

           = −           
           
           = +           
           
         = −         
         

3

in
2

sin cos cos cos cos sin
2 2 2 2 2 2

e

α

γ β α γ β α

 
 
 

           = −           
           

 

 

For Euler angles the in the Tait-Bryan  x–y–z convention, the rotation 
( ) ( ) ( )φ θ ψx y zR R R  corresponds to: 

 cos , sin cos , sin cos , sin
2 2 2 2 2 2
φ φ θ θ ψ ψ                =                 
                

q x y z  

When multiplied out, the expression reduces to: 

 ( )( )0 1 2 3
T, , ,e e e e=q  

 where: 
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0

1

2

cos cos cos sin sin sin
2 2 2 2 2 2

cos sin sin cos cos sin
2 2 2 2 2 2

cos sin cos sin cos s
2 2 2 2 2

e

e

e

φ θ ψ φ θ ψ

φ θ ψ ψ θ φ

φ θ ψ ψ θ

           = −           
           
           = +           
           
         = −         
         

3

in
2

cos cos sin cos sin sin
2 2 2 2 2 2

e

φ

φ θ ψ ψ θ φ

 
 
 

           = +           
           

 

 

The IEEE 1278.1-1995 Convention orientation ( ) ( ) ( )φ θ ψx y zΩ Ω Ω  corresponds to: 

 cos , sin cos , sin cos , sin
2 2 2 2 2 2
φ φ θ θ ψ ψ     − − − − − −           =                 

                
q x y z  

When multiplied out, the expression reduces to: 

 ( )( )0 1 2 3
T, , ,e e e e=q  

where: 

 

0

1

2

cos cos cos sin sin sin
2 2 2 2 2 2

cos sin sin cos cos sin
2 2 2 2 2 2

cos sin cos sin cos
2 2 2 2 2

e

e

e

φ θ ψ φ θ ψ

φ θ ψ ψ θ φ

φ θ ψ ψ θ

           = +           
           
           = −           
           
         = − −         
         

3

sin
2

cos cos sin cos sin sin
2 2 2 2 2 2

e

φ

φ θ ψ ψ θ φ

 
 
 

           = − +           
           

 

 

3.4.10 various to Euler angles 

3.5 Considerations for computational and storage efficiency 

[Possible future sections that compares various representation with respect to: 

1. minimal storage size, 

2. storage with cached values (for computational efficiency), 
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3. counts of floating point instruction steps for various operations.  

]  

3.6 Interpolation issues 

[Possible future section that deals with quaternion interpolation between two 
orientations.]  

3.7 Error analysis 

[Possible future section that investigates change rates in various representations] 

4 Rotational Kinematics 

4.1 Rotational velocity and acceleration  
Consider first the special case of rotation of a point about a fixed unit vector axis n  as a 
differentiable function of time, ( ) ( )( ) 0t tθ= nr R r .  Assume that the rotation begins at 

0t =  so that ( )0 0θ =  and ( ) 00 =r r .  By the alternate form of Rodrigues’ rotation 
formula: 
  ( ) ( )( ) ( )( ) ( ) ( )0 0 0 01 cos sint tθ θ θ= = + − × × + ×nr R r r n n r n r .   

The rotational velocity at time t  is then: 

  
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

0 0 0

0 0

1 cos sin

sin cos

d dt
dt dt

d d
dt dt

θ θ

θ θθ θ

= + − × × + ×

= × × + ×

r r n n r n r

n n r n r
 

Thus the velocity is the sum of two vector components.  One component ( )0× ×n n r  

points toward the rotation axis and the other 0×n r  is tangent to the arc or rotation. 

Evaluating at 0t =  gives the instantaneous rotational velocity: 

 ( ) 0 0 00d d
dt dt

θ θ
•

= × = × = ×r n r n r ω r , where θ
•

=ω n . 

The rotational acceleration is the second time derivative: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

0 0

2

2

2 2

2 2

sin cos

cos sin sin cos .

d d d dt
dt dt dtdt

d d d d
dt dtdt dt

θ θθ θ

θ θ θ θθ θ θ θ

 = × × + × 
 

   
= + × × + − + ×   
   

r n n r n r

n n r n r
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Evaluating at 0t =  gives the instantaneous rotational accelerationα : 

 ( )0 0.θ θ
••• •

= = × × + ×α ω n n r n r  

The first component points towards the rotation axis as is called the centripetal 
acceleration. 

 
 

Figure 8 

In the general case (in which the rotation axis may vary as function of time), we set 
( ) ( ) 0t t=r R r  with the initial condition ( ) 3 30 ×=R I  (that is, ( ) 00 =r r ).  To compute 

( )0d
dt

•
=

R
R , we note that as a rotation matrix we have ( ) ( )3 3

Tt t× =I R R  so that: 

 
( ) ( )

( ) ( ) ( ) ( )

3 3
T

T T

d d t t
dt dt

t t t t

×

••

 =  

= +

I R R

R R R R0
 

At 0t = , this expression reduces to ( ) ( )T0 0
••

= −R R , so ( )0
•

R  is skew-symmetric and 

must be in the form ( )
3 2

3 1

2 1

0
0 0

0

ω ω
ω ω
ω ω

•
− 

 = − = 
 − 

ωR S  where ( )1 2 3
T, ,ω ω ω=ω .  Thus 

we have ( ) 00d
dt

= = ×ωr S r ω r . 

ωωωω x r0 

r0 

ωωωω 

n x n x r0 

n 
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4.2 Orientation (ΩΩΩΩ), angular velocity (ωωωω), angular acceleration (αααα), 
torque (ττττ) 

We consider three cases …. 

Static case: Consider a rigid body with a body-fixed coordinate system origin at some 
point C on the body and let P be another point on the body with body coordinate vector 
b.  Given sC the space-fixed coordinate vector of C and body orientation ΩΩΩΩ, the space 
coordinate vector s for the point P is computed as C= +s s Ω b .  In this expression, the 
term Ω b  is to understood as orientation operator acting onb .  The implementation of 
this operation may depend on the specification of the orientation.  For example Ω b  may 
be computed: 

•  by Rodrigues' rotation formula if the orientation was specified in axis-angle form, 

•  by a quaternion operator if the orientation was specified in quaternion form, 

•  by matrix multiplication using a matrix computed from an Euler angle 
specification of the orientation, or 

•  by matrix multiplication the directional cosine matrix computed from the body 
coordinate system basis vectors in space coordinates. 

This comment applies to all such operations that follow. 

Rigid motion case:  In this case the body is moving so that sC and ΩΩΩΩ are functions of time 
and we have: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ct t t

t t t

t t t

•

••

= +

= + ×

= + ×

s s Ω b

s v ω b

s a bαααα

 

where: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

C ,

,

, and

.

v t t

t t

t t

t t

•

•

•

•

=

=

=

=

s

a v

ω Ω

ωαααα

 

Note that b  is time independent because it is fixed on the rigid body.  The orientation 
operator Ω  converts directions from the body coordinate system to the space coordinate 
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system, so that its derivatives ω  and αααα  have space coordinate system values.  The 
corresponding values in body coordinates are obtained with in inverse operator TΩ : 

 
( ) ( ) ( )

( ) ( )
B

B

T

T

t t t

t t

=

=

ω Ω ω

Ωα αα αα αα α
 

 

In the more general case, the point P is moving with respect to both coordinate systems.   

4.3 Dynamics 

4.3.1 Rigid body dynamics 
Consider a rigid body consisting of discrete particles iP  of mass im  and/or volume 

elements V  with mass density function4 ρ .  ( )i ts  will denote the coordinate vector at 

time t of point iP  in a space coordinate system with respect to the orthonormal basis 
, ,x y z  and ib  will denote the same point in a body coordinate system with respect to the 

                                                

4 At a point P the mass density ( )Pρ  may expressed as either function of a space coordinate 

( )SPACEρ s  or a body coordinate ( )BODYρ b . This notational distinction will not employed as the 
context makes it clear which function is intended. 

v 

b 

s 

sC 

x 

y 

z 

u 

w P 

C

Figure 9 
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orthonormal basis , ,u v w  attached to the body.  Because the body is rigid, coordinate 
vectors ib  are independent of time. 

The total mass of the body is: 
i

iM m dVρ= +∑ ∫∫∫V . 

The center of mass is located at ( ) ( ) ( )( ) ( )CM
1

i
i it m t t t d

M
ρ

∈

 = + 
 
∑ ∫∫∫ss s s s s

V
. 

We further require that the origin of the body coordinate system coincide with the center   
of mass.  As a consequence, in body coordinates, the center of mass is the body 
coordinate system zero vector: 

 ( )1
i

i im d
M

ρ
∈

 = + 
 
∑ ∫∫∫bb b b b

V
0  

If ( )tΩ  is the cosine matrix of , ,u v w  with respect to , ,x y z , then 

 ( ) ( ) ( )CMi it t t= +s s Ω b  and ( ) ( ) ( )CM
T

i it t t = − b Ω s s ,  

and velocities are given by 

 

( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )B

CM

i i

i

i

t t

t t t t

t t t

ω

ω

•
=

= + × −

= + ×

v s

v s s

v Ω b

  

where ( ) ( ) ( )CM andt t tω
•

=v s  is the rotational velocity in space coordinates. 

The linear momentum of a particle is defined by i iim m
•

= =p s v .  The total linear 
momentum of the body is: 

 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

CM CM

CM

CM

i

i

i i

i i

i i

i i i

t m t t t d

m t t t t d

m d t t m d

M t t

M t

ρ

ρ

ρ ρ

• •

∈

• • • •

∈

• •

∈ ∈

• •

= +

   = + + +      
   = + + +   
   

= +

=

∑ ∫∫∫

∑ ∫∫∫

∑ ∑∫∫∫ ∫∫∫

s

b

b b

P s s s s

s Ω b b s Ω b b

b b s Ω b b b b

s Ω

v

V

V

V V

0
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This result: 

 ( )M t=P v  

shows that total linear momentum is independent of orientation or rotational velocity.   

If a point b with mass m is rotating about an axis with (scalar) rotational rateω , in a circle 
of radius r, then its speed is rω  and its scalar linear momentum is ( )p m rω= .  The 
scalar angular momentum L of b is its scalar linear momentum multiplied by the length r 
of it moment arm: 2L rp r mω= = .  The terms in this expression that depend only on the 
geometric distribution of mass with respect to the rotation axis is the scalar moment of 
inertia 2I r m= .  We then have L Iω= .  If the rotational axis is determined by a unit 
vector n and if the angle between n and b isϕ , then we note that the length the moment 
arm is sinr ϕ= = ×b b n .  This motivates the following definitions.  The rotational 

momentum of particle iP  is defined as ( ) ( )i i it t= ×L b p .  Note that the rotational 

momentum is a vector quantity that is perpendicular to both the moment arm ib  and the 
momentum vector ip .  The rotational momentum iL  may also be expressed directly in 

terms of the rotational velocity: ( ) ( ) ( ) ( )( )Bi i i i i i i it t m t m t= × = × = × ×L b p b v b ω b . 

The total rotational momentum of the body is defined as: 

 ( ) ( )( ) ( ) ( )( )B B B
i

i i it m t t dρ= × × + × ×∑ ∫∫∫L b ω b b b ω b b  

The subscript B indicates that the vector values of ( )B tL  are represented in body space 

coordinates.  Since ( )B tω  varies in time, all the summation and integration in the above 
expression needs to be re-evaluated at each time t.  However, the above expression is 
linear in ( )B tω  and, as shown in Appendix D, it may be factored out to the equivalent 
form: 

   ( ) ( )B B Bt t⊗=L I ω  

where B⊗I is the matrix defined as:  

 ( ) ( ) ( )B 3 3 3 3
i

i i i i im dρ⊗ × ×   = • − ⊗ + • − ⊗   ∑ ∫∫∫I b b I b b b b b I b b b
V
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This matrix is the moment of inertia tensor5.  The importance of this matrix is that it is 
time independent and needs to be computed only once and reduces the computation of 

( )B tL  to nine multiplications and six additions.  Appendix D expands B⊗I in terms of 
body coordinate components: 

 
11 12 13

B 12 22 23

13 23 33

I I I
I I I
I I I

⊗

 
 =  
 
 

I   

where: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 2 2
11 ,2 ,3 2 3

2 2 2 2
22 ,1 ,3 1 3

2 2 2 2
33 ,1 ,2 1 2

1 2 3

1 2 3

1 2 3

, ,

, ,

, ,

i i
i

i i
i

i i
i

i

i

i

I m b b b b b b b d

I m b b b b b b b d

I m b b b b b b b d

ρ

ρ

ρ

= + + +

= + + +

= + + +

∑ ∫∫∫

∑ ∫∫∫

∑ ∫∫∫

b

b

b

 

 

( ) ( )

( ) ( )

( ) ( )

12

23

13

,1 ,2 1 2 3 1 2

,2 ,3 1 2 3 2 3

,1 ,3 1 2 3 1 3

, ,

, ,

, ,

i

i

i

i i i

i i i

i i i

I m b b b b b b b d

I m b b b b b b b d

I m b b b b b b b d

ρ

ρ

ρ

= − −

= − −

= − −

∑ ∫∫∫

∑ ∫∫∫

∑ ∫∫∫

b

b

b

 

 
( )
( )

,1 ,2 ,3

1 2 3

T

T

, ,

, ,

i i i ib b b

b b b

=

=

b

b
 

The coordinate component values depend on the choice of the basis for the body 
coordinate system.  The only constraint6 imposed on the basis is that it is orthonormal 
with origin at the center of mass.  The matrix B⊗I is symmetric, thus there exists some 
basis satisfying the constraint which will diagonalize the matrix and put the diagonal 
elements (the eigenvalues) in increasing order.  That is, there exists a choice of basis for 
which:  

                                                

5 The expression for B⊗I is bilinear in body coordinates and may therefore be regarded as a 
tensor of order 2. 

6 Some applications impose additional constraints.  For example, in the IEEE 1278.1-1995 
standard the first axis in the entity coordinates system must point forward. 
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11

B 22 11 22 33

33

and
0 0

0 0 ,
0 0

I
I I I I

I
⊗

 
 = ≤ ≤ 
 
 

I . 

The coordinate axes of this basis are called the principal axes7 and the diagonal 
elements 11 22 33and, ,I I I  are called the principal moments of inertia.  The use of this 

basis reduces the computation of ( )B tL  to three multiplications. 

The total rotational momentum in space coordinates is given by: 

 ( ) ( ) ( )t t t⊗=L I ω . 

In space coordinates, the moment of inertia tensor is time dependent and is computed 
as: 

 ( ) ( ) ( ),B
Tt t t⊗ ⊗=I Ω I Ω  

If the external force acting on particle iP  is ( )i tF  and/or the external force acting on a 

volume element is ( ),tf s  in the space coordinate system and ( )Bi tF and ( )B ,tf b in the 
body coordinate system then the total force acting on the body is: 
 

 
( ) ( ) ( )

( ) ( ) ( )B B B

,

,
i

i

i

i

t t t d

t t t d

∈

∈

= +

= +

∑ ∫∫∫

∑ ∫∫∫
s V

b V

F F f s s

F F f b b
. 

The analogue for external rotational force is torque and it is defined as:  

 
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )B B B

CM CM ,

,
i

i

i i

i i

t t t t t t t d

t t t d

= − × + − ×

= × + ×

∑ ∫∫∫

∑ ∫∫∫

τ s s F s s f s s

τ b F b f b b

V

V

 

In Newtonian physics the momentum of a particle is preserved unless an external force 
acts on it in which case the relationship between force and momentum is: 

 ( ) ( )i i
dt t
dt

=F P  

It follows that the relationship between total force and total momentum is: 

                                                

7 Not to be confused with principal rotations. 
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 ( ) ( ) ( )d dt t M t
dt dt

= =F P v . 

Similarly for torque we have:  

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

( )

B B B

B

B

B

,

,

i i

i i

i i

t t t d

d dt t d
dt dt

d t t d
dt
d t
dt

ρ

= × + ×

= × + ×

 = × + × × 

=

∑ ∫∫∫
∑ ∫∫∫

∑ ∫∫∫

τ b F b f b b

b p b f b b

b p b b ω b b

L

 

In term of rotational inertia we have: 

 ( ) ( ) ( )d dt t t
dt dt⊗= =τ L I ω . 

 

5 Use cases 

5.1 DIS Euler angles 
This use case is illustrated with the problem of converting aircraft orientation, as 
indicated by its onboard inertial system, to Tait-Bryan angles with respect to WGS 84 
Geocentric (DIS Euler angles).  

Consider an aircraft that at time t0 is stationary on an airfield.  Its inertial system set so 
that the artificial horizon is level with the ground and the instrument panel compass north 
points in the direction of local North.  For convenience, its location at t0 shall be called 
ground zero.  The resulting inertial system readouts of roll, pitch and yaw now indicate 
the orientation of the aircraft with respect to a Local-centric Euclidian Frame with origin 
at ground zero, and x-, y- and z-axes pointing local north, east and down respectively.  
This linear-space frame is denoted by E0.  At some subsequent time, the aircraft taxies 
to the runway, takes off and maneuvers, and at time t1 the roll, pitch and yaw are read 
out.  These values need to be converted to DIS Euler angles. 

The t1 roll, pitch and yaw values correspond to the orientation of one linear-space frame 
with respect to another. One is the entity space (the Euclidean frame used for the 
aircraft), see Figure 7.  The other is the E0 frame.  Thus the roll, pitch and yaw values 
are the Tait-Byan angles representation of the orientation of the aircraft coordinate fram 
with respect to the E0 frame: 

 ( )t →Ω Aircraft E0 .  



DRAFT 

DRAFT 42

Let L denote a range coordinate frame consisting of Local Tangent Frame Eucludian 
SRF.  If we assume that the origin of L is near, or the same as, ground zero (the origin of 
E0), then E0 and L are related as shown in the table below: 

 

Axis E0 coordinate frame local tangent frame L 

x points to local North points to local East 

y points to local East points to local North 

z points to local down points to local up 

This relationship is expressed as the orientation of E0 with respect to L: 

 
0 1 0
1 0 0
0 0 1

→

 
 =  
 − 

ΩE0 L . 

Let W denote the WGS 84 geocentric SRF.  The orientation of L with respect W is 
denoted as:  

 →ΩL W . 

The SRM specifies the computation of the matrix representation of this orientation based 
on the WGS 84 geodetic coordinate for the origin of L. 

The orientation of the aircraft with respect to W is the given by: 

 ( ) ( )t t→ →→ →=Ω Ω Ω ΩL W E0 LAircraft W Aircraft E0  at time t. 

The DIS Euler roll, pitch and yaw values at time t are then just the Tait-Bryan angles 
representation of the orientation ( )t →Ω Aircraft W . 

5.2 Rigid body integration of state 
In the notation of section 4.3.1, define the state of a rigid body system at time t  as the 
ensemble of the location of the center of mass, the orientation, and the linear and 
angular momentums: 

 ( ) ( ) ( ) ( ) ( ){ }CM , , ,t t t t t≡ s Ω P LÒ  
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The problem is compute ( )t t+ ∆Ò  for some small time increment t∆  given the previous 

state ( )tÒ  and system specific functions for total force and torque.  In the most general 
case, force and torque are functions of time and the state variables.  That is: 

 
( ) ( )( )
( ) ( )( )

,

,

t t t

t t t

=

=

F F

τ τ

Ò
Ò

  

This problem has several applications.  For example, in distributed simulations, entity 
states are locally "dead reckoned" in time steps t∆  until authoritative data has been 
distributed.  In computer generated animations, object states are integrated in steps of 

t∆ equal to the frame rate of the animation and covering the time interval of a scene 
from beginning to end.   

The integration step is realized by setting each state variable ( )t t+ ∆X  to the 

approximate value ( ) ( )d t
t t

dt
+ ∆

X
X .  The error of this approximation decreases as t∆  

approaches zero.  In particular ( )t t+ ∆Ò  may be approximated by setting: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

CM CM

t

tt t t t
M

t t t t t

t t t t t

t t t t t

∆+ ∆ = +

+ ∆ = + ∆

+ ∆ = + ∆

+ ∆ = + ∆

ω

s s P

Ω Ω S Ω

P P F

L L τ

 

The in the expression for Ω  the value ( )tω  is required to determine the corresponding 

skew-symmetric matrix ( )tωS .  That requires two auxiliary computations.  

 
( ) ( ) ( )
( ) ( ) ( )

1 1
,B

1

Tt t t

t t t

− −
⊗ ⊗

−
⊗

=

=

I Ω I Ω

ω I L
 

The computation for ( )t t+ ∆Ω , like the other computations, is approximate.  The 
approximate value may fail the criteria for an orientation matrix 
( 3 3

Tanddet 1, ×= =Ω Ω Ω I ).  This will lead to undesirable results in subsequent 

iterations, therefore the approximate ( )t t+ ∆Ω  value needs to be adjusted to satisfy the 
criteria.  If the Ω  operator is represented with a matrix, this adjustment can be 
computationally expensive.  This is one reason for the popular use of unit quaternions.  
A quaternion is adjusted to a unit quaternion simply by dividing by its scalar modulus. 
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Appendices 

Appendix A – Properties of the vector cross product 

Definition: 

 ( )2 3 3 2 3 1 1 3 1 2 2 1
T, ,u v u v u v u v u v u v× = − − −u v  

Note that × = − ×v u u v so that the cross production is not a commutative operation. 

 sinθ× =u v u v  

where θ  is the angle between the two vectors. 

The following identity is called Lagrange’s formula: 

 ( ) ( ) ( )× × = • − •u v w u w v u v w  

The cross product can be computed as a matrix multiplication.  For each vector u  there 

corresponds a skew-symmetric matrix 
3 2

3 1

2 1

0
0

0

u u
u u
u u

− 
 = − 
 − 

uS  such that × = uu v S v .  

A special case of Lagrange's formula is: 

 ( ) ( ) ( )× × = • − •u u w u w u u u w . 

If ( ) ( )1 2 3 1 2 3
T T, , , , ,w w w u u u= =w u , then: 
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( ) ( )

( )

1

1 1 2 2 3 3 2

3

1 1 1 1 2 2 1 3 3

2 1 1 2 2 2 2 3 3

3 1 1 3 2 2 3 3 3

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

u
u w u w u w u

u

u u w u u w u u w
u u w u u w u u w
u u w u u w u u w

u u u u u u w
u u u u u u w
u u u u u u w

 
 • = + +  
 
 

+ + 
 = + + 
 + + 
   
   =    
   
   

= ⊗

u w u

u u w

 

It follows that: 

   
( ) ( ) ( )

( ) ( ) 3 3×

× × = ⊗ − •

 = ⊗ − • 

u u w u u w u u w

u u u u I w
 

Since × = − ×u w w u  we also have: 

 ( ) ( ) 3 3× × × = • − ⊗ u w u u u I u u w  

Also, substituting × = uu v S v , we have ( ) ( ) ( ) 2× × = × = = uu u uu u w u S v S S v S v .  
Therefore: 

 ( ) ( )2
3 3× = ⊗ − • uS u u u u I  

Appendix B – Derivation of Rodrigues’ rotation formula 

Let n  be a unit vector and θ  a rotation angle.  The point r  is rotated around the axis 
determined by n  through angle θ  to the rotated point ′r .  To compute ′r  in terms of 

, , andθ ′n r , consider first the special case of a point s  that is perpendicular to n .  A 
unit vector m  that is perpendicular to both s  and n  is given by: 

 
1 1= × = ×
×

m n s n s
n s s

 since ( )sin 2
π× = =n s n s s .   

The point s  rotates to the point ′s  in the plane spanned by m  and s .  The right triangle 
in Figure B.1 has a hypotenuse of length s  and sides of lengths ( )sin θ s  and 

( )cos θ s .  It follows that  
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 ( ) ( ) ( ) ( )cos sin cos sinθ θ θ θ′ = + = + ×s s s m s n s . 

In the general case, let ( )= − •s r r n n .  Then, as shown in Figure B.2, r is the vector 

sum s  and its component in the vector n  direction: ( )= • +r r n n s .  Since ( )•r n n  is 

on the n  axis, it does not change under the rotation and so ( )′ ′= • +r r n n s .  

Substituting ( ) ( )cos sinθ θ′ = + ×s s n s  gives: ( ) ( ) ( )cos sinθ θ′ = • + + ×r r n n s n s .  

Substitute ( )( ) ( )× = × − • = × − • × = ×n s n r r n n n r r n n n n r , and substitute 

( )= − •s r r n n  to get ( ) ( ) ( )( ) ( )cos sin .θ θ′ = • + − • + ×r r n n r r n n n r   Simplifying 

the last result we have Rodrigues’ rotation formula: 

 ( ) ( )( ) ( ) ( )cos 1 cos sinθ θ θ′ = + − • + ×r r r n n n r  

Matrix form: As a consequence of Lagrange’s formula, 
( ) ( ) ( )× × = • − •n n r n r n n n r and since n is a unit vector, ( ) 1• =n n and we 

have ( ) ( )• = × × +r n n n n r r .  Substituting for this term in Rodrigues’ rotation formula 
yields the following alternate form: 

 
( ) ( )( ) ( ) ( )

( )( ) ( ) ( )
cos 1 cos sin

1 cos sin

θ θ θ

θ θ

′  = + − × × + + × 
= + − × × + ×

r r n n r r n r

r n n r n r
 

Substituting with the matrix form of the cross product gives the matrix form of the 
formula: 

θθθθ 
 s 

 

s’ 
 

m 
 

sin(θ)||s||m 
 

cos(θ)s  
 

Figure B.1 
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( )( ) ( )3 3
21 cos sinθ θ× ′ = + − + n nr I S S r , where 

3 2

3 1

2 1

0
0

0

n n
n n
n n

− 
 = − 
 − 

nS  is the skew 

matrix corresponding to n . 

 

 

Appendix C – Quaternion operators on 3D Euclidean space 
derivation 
 
This appendix provides the derivation of the equality: 

 ( ) ( ) ( )( )( )2
0 00, 0, 2 2e e∗ = − • + • + ×q r q e e r e r e e r  

which shows that the quaternion operation ∗p qpq  transforms a "pure imaginary" 
quaternion to another "pure imaginary" quaternion and that the imaginary part r  is 
transformed to ( ) ( )2

0 02 2e e− • + • + ×e e r e r e e r  where ( )0, .e=q e   

Substitute ( )0, :e=q e   

Figure B.2 

s 
 

s’ 
 

n 
 

θ 
 

θ 
   

 

r' 
 

r 
 

(r  n)n 
 

. 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )( )

0 0

0 0

0 0

0 0 0

0 0

0 0 0

left multiply:

right multiply:

0, , 0, ,

0 , ,

,

,

e e

e e

e e

e e e

e e

e e e

∗ = −

= − • + × −

 − • − + × • −
 =
 + × + − • − + + × × − 
 − • + + × •
 =
 + × + • − + × × 

q r q e r e

e r r e r e

e r r e r e

r e r e r e r e r e

e r r e r e

r e r e r e r e r e

 

( )
( ) ( ) ( )( )

0 0

0 0 0 0

distribute terms:

,e e

e e e e

 − • + • + × •
 =
 + × + • − × − × × 

e r r e e r e

r e r e r e r e e r e
 

( ) ( ) ( )( )( )
( ) ( )

( ) ( ) ( ) ( ) [ ]
( ) ( ) ( )( )( )

2
0 0 0

2
0 0 0

simplify:

since: is perpendicular to 

and: Lagrange's formula

,

 ,  0,

 

0,

e e e

e e e

= × • + × + • − × − × ×

× × • =

− × × = × × = + • − •

= + × + • − × + • − •

e r e r e r e r e r e e r e

e r e e r e

e r e e e r e r e e e r

r e r e r e r e e r e e e r

 

( ) ( ) ( )( )( )

( ) ( )( )( )

0 0

2
0 0

2
0 0

since:

simplify:

0, 2

0, 2 2

e e

e e

e e

− × = + ×

= + • + × + • − •

= − • + • + ×

r e e r

r e r e e r e r e e e r

e e r e r e e r

 

Appendix D – Moment of inertia 

The definition of total angular momentum L is a summation and/or integration of terms in 
form ( ).× ×b ω b   As shown in Appendix A: 

 ( ) ( ) ( )3 3× × × = • − ⊗ b ω b b b I b b ω . 

Substituting for this expression in the definition of total momentum yields: 
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( ) ( ) ( ) ( )3 3 3 3

i
i i i i it m dρ× ×

⊗

    = • − ⊗ + • − ⊗     
=

∑ ∫∫∫L b b I b b b b b I b b b ω

I ω

V  

 

Expressed in coordinate components, the expression ( ) ( )3 3× • − ⊗ b b I b b  is: 

 

( ) ( )
2 2 2 2
1 2 3 1 1 2 1 3

2 2 2 2
3 3 1 2 3 2 1 2 2 3

2 2 2 2
1 2 3 3 1 3 2 3

2 2
2 3 1 2 1 3

2 2
2 1 1 3 2 3

2 2
3 1 3 2 1 2

0 0
0 0
0 0

b b b b b b b b
b b b b b b b b

b b b b b b b b

b b b b b b
b b b b b b
b b b b b b

×

    + +
    

 • − ⊗ = + + −     
    + +    
 + − −
 = − + − 
 − − + 

b b I b b

 

Appendix E – Matrix to axis-angle derivation 

If 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
 
 

R  is a rotation matrix, then 

 ( ) ( )( ) ( )3 3cos 1 cos sinθ θ θ× = + − ⊗ + nR I n n S  

 for some unit vector and angle ( ),θn (see 3.2.1.1, alternate matrix form of Rodrigues’ 
rotation formula). 

The transpose operator is linear and since 3 3×I  and ⊗n n  are symmetric and nS  is 
skew-symmetric, it follows that: 

 ( )T 2sin θ− = nR R S . 

The trace operator is also linear and since ( )Trace 0=nS  and ( )Trace 1⊗ =n n , 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )Trace cos 3 1 cos 1 sin 0 1 2cosθ θ θ θ= + − + = +R . 

Therefore 
( )1 Trace

arccos , 0 .
2

θ θ π
  −

= ≤ ≤     

R
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If 0 θ π< < , then sin 0θ > and 

 
( )

( )

3 2

3 1

2 1

12 21 13 31

21 12 23 32

31 13 32 23

T
0

10
2sin

0

0
1 0

2sin
0

n n
n n
n n

a a a a
a a a a
a a a a

θ

θ

− 
   = − = −   
 − 

− − 
 = − − 
 − − 

nS R R

 

Therefore: 

 ( )
1 32 23

2 13 31

3 21 12

1
2sin

n a a
n a a
n a a

θ

−   
   = = −   
   −   

n . 

Alternatively, let 
32 23

13 31

21 12

a a
a a
a a

− 
 = − 
 − 

v , and let 
1 .=n v
v

  

If 0θ = , there is no rotation so n  is in determinant. 

If θ π= , then the alternate matrix form of Rodrigues’ rotation formula reduces down to: 

 

[ ]3 3

2
1 1 2 1 3

2
2 1 2 2 3

2
3 1 3 2 3

2

2 1 2 2
2 2 1 2
2 2 2 1

n n n n n
n n n n n
n n n n n

×= − + ⊗

 −
 = − 
 − 

R I n n

 

Therefore: ( ) ( ) ( )2 2 2
1 11 2 22 3 33and1 2, 1 2, 1 2.n a n a n a= + = + = +   Find the maximum 

of 11 22 33and, ,a a a  and use it to find one coordinate component of n  and then derive the 
components from it. 

Case 11a  is the maximum:  Let ( ) 1312
1 11 2 3

1 1

1 2, ,
2 2

aan a n n
n n

= + = = . 

Case 22a  is the maximum:  Let ( ) 3212
2 22 1 3

2 2

1 2, ,
2 2

aan a n n
n n

= + = = . 

Case 33a  is the maximum:  Let ( ) 13 23
3 33 1 2

3 3

1 2, ,
2 2
a an a n n
n n

= + = = . 

Computational round off may require normalization: 
1→n n
n

. 



DRAFT 

DRAFT 51

INDEX 

 

4-tuple form, 21 

arctan2 function, 2 

attitude, 6 

axis-angle representation, 9 

body-fixed, 15 

Cardano angles, 18 

center of mass, 37 

cross product, 2 

direction cosine matrix, 7 

dot product, 1 

elementary Rotations, 10 

Euler angle convention, 15 

Euler angles, 15 

Euler parameters, 24 

Euler’s rotation theorem, 7 

Hamilton form, 21 

identity matrix, 2 

Inner product, 1 

length of a vector, 2 

line of nodes, 15 

linear momentum, 37 

local tangent frame, 4 

modulus, 22 

moment of inertia tensor, 39 

nautical angles, 18 

norm, 2 

norm (quaternion), 22 

normalized, 3 

nutation angle, 16 

orientation, 6 

orientation operator, 8 

outer product, 2 

pitch, 20 

position-space, 3 

precession angle, 16 

principal axes, 40 

principal axis, 10 

principal moments of inertia, 40 

principal rotation, 10 

right hand rule, 9 

roll, 20 

rotation operator, 8 

rotational momentum, 38 

scalar product, 1 

scalar vector form, 21 

space-fixed, 15 

spin angle, 16 

Tait-Bryan angles, 18 
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torque, 40 

total linear momentum, 37 

total mass, 37 

unit quaternion, 23 

unit vector, 3 

vector product, 2 

yaw, 20 

zero vector, 2 

  


